Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 34-44    DOI: 10.11868/j.issn.1001-4381.2021.001103
  铝合金专栏 本期目录 | 过刊浏览 | 高级检索 |
Al-Zn-Mg系铝合金的微合金化研究进展
林方成, 程鹏明(), 张鹏, 刘刚, 孙军
西安交通大学 金属材料强度国家重点实验室, 西安 710049
Research progress in microalloying of Al-Zn-Mg series aluminum alloys
Fangcheng LIN, Pengming CHENG(), Peng ZHANG, Gang LIU, Jun SUN
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(1389 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

Al-Zn-Mg系铝合金作为一种轻质高强合金在航空航天和交通等领域有着重要的应用。获得更高的力学性能以及更优的耐腐蚀性能是Al-Zn-Mg系合金的发展方向, 因此需要进一步优化其微观组织。在合金成分和热处理制度调控空间有限的情况下, 微合金化成为该合金性能改善的一种重要手段。本文简要总结了微合金化元素对Al-Zn-Mg系铝合金力学性能、热加工行为及耐腐蚀性能的影响, 重点关注了微合金化元素在不同工艺阶段下形成的第二相颗粒能有效细化晶粒并强烈阻碍位错运动; 讨论了热加工变形过程中钉扎晶界及亚晶界、抑制回复再结晶的作用; 阐述了提高合金耐腐蚀性能方法的内在机理。最后对Al-Zn-Mg系铝合金微合金化的研究方向进行展望, 深入理解微合金化元素间、主微合金元素间的相互作用机理, 实现微合金化元素的精准、精确投放将是未来主要的研究内容之一。明确微合金化元素在热加工过程中对变形组织及位错组态的调控作用将对提高合金耐腐蚀性能提供借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林方成
程鹏明
张鹏
刘刚
孙军
关键词 微合金化Al-Zn-Mg力学性能变形行为耐腐蚀性能    
Abstract

Al-Zn-Mg series aluminum alloys have important applications in aerospace, transportation etc, for their excellent properties of low density and high strength. Further optimizing the microstructure to obtain higher mechanical properties and better corrosion resistance is the development direction of Al-Zn-Mg alloys. Microalloying has become an important means of improving the properties of aluminum alloys, owing to the limited space for alloy composition optimization and heat treatment processes improvement. The effects of microalloying elements on the mechanical properties, hot deformation behavior and corrosion resistance of Al-Zn-Mg alloys were briefly summarized, focusing on the different effects of the second phase particles formed by microalloying elements in different process stages, such as effectively refine grains and strongly hinder the movement of dislocations. The effects of pin grain boundaries, sub-grain boundaries and inhibiting recrystallization during hot deformation were discussed. The internal mechanism of improving the corrosion resistance of the alloy was explained. In addition, the further research direction of microalloying of Al-Zn-Mg aluminum alloy was prospected, understanding the interaction mechanism of microalloying elements and dual alloying-microalloying elements to realize the precise and accurate addition of microalloying elements will be one of the main research contents in the future. Clarifying the regulation effect of microalloying elements on deformation structures and dislocation configurations during hot working will provide a reference for improving the corrosion resistance of alloys.

Key wordsmicroalloying    Al-Zn-Mg    mechanical property    deformation behavior    corrosion resistance
收稿日期: 2021-11-11      出版日期: 2022-08-16
中图分类号:  TG146.2+1  
基金资助:国家自然科学基金项目(51901173)
通讯作者: 程鹏明     E-mail: cpm307@xjtu.edu.cn
作者简介: 程鹏明(1984—),男,助理研究员,博士,研究方向为难熔金属及其合金的强韧化机理和变形行为,联系地址:陕西省西安市碑林区咸宁西路28号西安交通大学金属材料强度国家重点实验室(710049),E-mail: cpm307@xjtu.edu.cn
引用本文:   
林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
Fangcheng LIN, Pengming CHENG, Peng ZHANG, Gang LIU, Jun SUN. Research progress in microalloying of Al-Zn-Mg series aluminum alloys. Journal of Materials Engineering, 2022, 50(8): 34-44.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001103      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/34
Mass fraction of Sc/% Yield strength/MPa Ultimate tensile strength/MPa Elongation/%
0 439/304 520/304 15/0.21
0.18 457/452 552/559 14/11
0.38 494/497 593/595 15/13
0.48 505/508 600/600 12/9
Table 1  25 ℃下添加不同Sc含量合金平行/垂直于凝固方向的力学性能[20]
Fig.1  Al-0.09Sc-0.047Zr合金
(a)300 ℃时效288 h后α-Al/Al3(Sc, Zr)界面处Al, Sc, Zr浓度分布图[26];(b)350 ℃时效2328 h后Al3(Sc, Zr)粒子的HRTEM图像[31]
Fig.2  不同Er含量的Al-Zn-Mg合金120 ℃下的时效硬化曲线[37]
Fig.3  Y微合金化Al-Zn-Mg-Cu合金中两种不同形态Al8Cu4Y颗粒的HAADF图像[40]
(a)球形; (b)纳米网状
Fig.4  含0%(Sc+Zr)(a)和0.6%(Sc+Zr)(b)冷轧板470 ℃退火1 h后的EBSD图像以及Al3(Sc+Zr)钉扎亚晶界(c)和位错(d)的TEM图像[43]
Fig.5  4道次等通道转角挤压(EACP)后550 ℃退火试样中3种非共格的Al3(Sc, Zr)颗粒形态[46]
(a)Al3(Sc, Zr)颗粒粗化导致界面非共格;(b)位错或晶界剪切导致界面非共格;(c)变形晶粒回复导致界面非共格;(1)整体HRTEM图像; (2)边缘HRTEM及Fourier滤波图像; (3)图(1)的FFT变化图像
Fig.6  Al-Zn-Mg-Cu合金晶间腐蚀深度与抗拉强度的关系[39, 48-50]
Fig.7  Al3Sc1-xZrx粒子对合金SSRT结果及相应组织的影响[53]
(a)拉伸曲线;(b)应力腐蚀开裂敏感性指数;(c), (d)3.5% NaCl腐蚀环境下断口SEM,EBSD及明场TEM图像
1 刘懿芳, 田伟, 孙玥. Al-Zn-Mg-Cu系铝合金微合金化的研究进展[J]. 有色金属材料与工程, 2018, 39 (1): 38- 41.
1 LIU Y F , TIAN W , SUN Y . Research progress of microalloying of Al-Zn-Mg-Cu aluminum alloy[J]. Nonferrous Metal Materials and Engineering, 2018, 39 (1): 38- 41.
2 ROMETSCH P A , ZHANG Y , KNIGHT S . Heat treatment of 7××× series aluminum alloys-some recent developments[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (7): 2003- 2017.
doi: 10.1016/S1003-6326(14)63306-9
3 陈志国, 杨文玲, 王诗勇, 等. 微合金化铝合金的研究进展[J]. 稀有金属材料与工程, 2010, 39 (8): 1499- 1504.
3 CHEN Z G , YANG W L , WANG S Y , et al. Research progress of microalloyed aluminum alloy[J]. Rare Metal Materials and Engineering, 2010, 39 (8): 1499- 1504.
4 杨守杰, 邢清源, 于海军, 等. 800 MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46 (4): 82- 90.
4 YANG S J , XING Q Y , YU H J , et al. Al-Zn-Mg-Cu alloys with strength of 800 MPa[J]. Journal of Materials Engineering, 2018, 46 (4): 82- 90.
5 燕云程, 黄蓓, 李维俊, 等. Al-Zn-Mg-Cu系超高强度铝合金的研究进展[J]. 材料导报, 2018, 32 (增刊2): 358- 364.
5 YAN Y C , HUANG B , LI W J , et al. Research progress of Al-Zn-Mg-Cu ultra-high strength aluminum alloys[J]. Materials Reports, 2018, 32 (Suppl 2): 358- 364.
6 AZARNIYA A , TAHERI A K , TAHERI K K . Recent advances in ageing of 7××× series aluminum alloys: a physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781, 945- 983.
doi: 10.1016/j.jallcom.2018.11.286
7 DONG P , CHEN S , CHEN K . Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy[J]. Journal of Alloys and Compounds, 2019, 788, 329- 337.
doi: 10.1016/j.jallcom.2019.02.228
8 WEN K , XIONG B , REN W , et al. Fe-rich particles influenced secondary crack characteristics in an Al-Zn-Mg-Cu alloy extrusion plate with high zinc content[J]. Scripta Materialia, 2020, 186, 259- 262.
doi: 10.1016/j.scriptamat.2020.05.045
9 WEN K , XIONG B Q , ZHANG Y A , et al. Aging precipitation characteristics and tensile properties of Al-Zn-Mg-Cu alloys with different additional Zn contents[J]. Rare Metals, 2020, 40 (8): 2610- 2166.
10 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57 (2): 129- 149.
10 GAO Y H , LIU G , SUN J . Recent progress of high-temperature resistant aluminum-based alloys: microstructure design and precipitation strategy[J]. Acta Metallurgica Sinica, 2021, 57 (2): 129- 149.
11 高一涵, 刘刚, 孙军. 铝合金析出强化颗粒的微合金化调控[J]. 中国材料进展, 2019, 38 (3): 231- 241.
11 GAO Y H , LIU G , SUN J . Tailoring the strengthening particles in aluminum alloys by microalloying[J]. Materials China, 2019, 38 (3): 231- 241.
12 赵辉, 赵菲, 杨长龙, 等. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48 (5): 112- 119.
12 ZHAO H , ZHAO F , YANG C L , et al. Effect of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys[J]. Journal of Materials Engineering, 2020, 48 (5): 112- 119.
13 ZHENG Z Q , LIU W Q , LIAO Z Q , et al. Solute clustering and solute nanostructures in an Al-3.5Cu-0.4Mg-0.2Ge alloy[J]. Acta Materialia, 2013, 61 (10): 3724- 3734.
doi: 10.1016/j.actamat.2013.03.004
14 LIU M , BANHART J . Effect of Cu and Ge on solute clustering in Al-Mg-Si alloys[J]. Materials Science and Engineering: A, 2016, 658, 238- 245.
doi: 10.1016/j.msea.2016.01.095
15 ZHANG Y , ZHANG Z , MEDHEKAR N V , et al. Vacancy-tuned precipitation pathways in Al-1.7Cu-0.025In-0.025Sb (at.%) alloy[J]. Acta Materialia, 2017, 141, 341- 351.
doi: 10.1016/j.actamat.2017.09.025
16 ZHOU X , LIU Z , BAI S , et al. The influence of various Ag additions on the nucleation and thermal stability of Ω phase in Al-Cu-Mg alloys[J]. Materials Science and Engineering: A, 2013, 564, 186- 191.
doi: 10.1016/j.msea.2012.11.081
17 ROSALIE J M , BOURGEOIS L . Silver segregation to θ'(Al2Cu)-Al interfaces in Al-Cu-Ag alloys[J]. Acta Materialia, 2012, 60 (17): 6033- 6041.
doi: 10.1016/j.actamat.2012.07.039
18 GAO Y H , GUAN P F , SU R , et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance[J]. Materials Research Letters, 2020, 8 (12): 446- 453.
doi: 10.1080/21663831.2020.1799447
19 ZHANG J Y , GAO Y H , YANG C , et al. Microalloying Al alloys with Sc: a review[J]. Rare Metals, 2020, 39 (6): 636- 650.
doi: 10.1007/s12598-020-01433-1
20 KUMAR N , MISHRA R S . Additivity of strengthening mechanisms in ultrafine grained Al-Mg-Sc alloy[J]. Materials Science and Engineering: A, 2013, 580, 175- 183.
doi: 10.1016/j.msea.2013.05.006
21 POLMEAR I . A trace element effect in alloys based on the aluminum-zinc-magnesium system[J]. Nature, 1960, 186 (4721): 303- 304.
doi: 10.1038/186303a0
22 MACCHI C E , SOMOZA A , DUPASQUIER A , et al. Secondary precipitation in Al-Zn-Mg-(Ag) alloys[J]. Acta Materialia, 2003, 51 (17): 5151- 5158.
doi: 10.1016/S1359-6454(03)00364-1
23 MALONEY S , HONO K , POLMEAR I , et al. The effects of a trace addition of silver upon elevated temperature ageing of an Al-Zn-Mg alloy[J]. Micron, 2001, 32 (8): 741- 747.
doi: 10.1016/S0968-4328(00)00081-0
24 OGURA T , HIROSAWA S , CEREZO A , et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg(-Ag) alloys[J]. Acta Materialia, 2010, 58 (17): 5714- 5723.
doi: 10.1016/j.actamat.2010.06.046
25 ZHU Q , CAO L , WU X , et al. Effect of Ag on age-hardening response of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering: A, 2019, 754, 265- 268.
doi: 10.1016/j.msea.2019.03.090
26 BOOTH-MORRISON C , DUNAND D C , SEIDMAN D N . Coarsening resistance at 400 ℃ of precipitation-strengthened Al-Zr-Sc-Er alloys[J]. Acta Materialia, 2010, 59 (18): 7029- 7042.
27 YANG C , ZHANG P , SHAO D , et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition[J]. Acta Materialia, 2016, 119, 68- 79.
doi: 10.1016/j.actamat.2016.08.013
28 SUN Y , PAN Q , LUO Y , et al. Study on the primary Al3Sc phase and the structure heredity of Al-Zn-Mg-Cu-Sc-Zr alloy[J]. Materials Characterization, 2020, 169, 110601.
doi: 10.1016/j.matchar.2020.110601
29 SENKOV O , BHAT R , SENKOVA S , et al. Microstructure and properties of cast ingots of Al-Zn-Mg-Cu alloys modified with Sc and Zr[J]. Metallurgical and Materials Transactions A, 2005, 36 (8): 2115- 2126.
doi: 10.1007/s11661-005-0332-8
30 SENKOV O N , SHAGIEV M R , SENKOVA S V , et al. Precipitation of Al3(Sc, Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia, 2008, 56 (15): 3723- 3738.
doi: 10.1016/j.actamat.2008.04.005
31 FULLER C , MURRAY J , SEIDMAN D N . Temporal evolution of the nanostructure of Al3(Sc, Zr) alloys: part I-chemical compositions of Al3(ScZr) precipitates[J]. Acta Materialia, 2005, 53 (20): 5401- 5413.
doi: 10.1016/j.actamat.2005.08.016
32 HUANG X , PAN Q , LI B , et al. Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloy sheet with trace amount of Sc[J]. Journal of Alloys and Compounds, 2015, 650, 805- 820.
doi: 10.1016/j.jallcom.2015.08.011
33 LI B , PAN Q , CHEN C , et al. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr[J]. Journal of Alloys and Compounds, 2016, 664, 553- 564.
doi: 10.1016/j.jallcom.2016.01.016
34 XIAO Q F , HUANG J W , JIANG Y G , et al. Effects of minor Sc and Zr additions on mechanical properties and microstructure evolution of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (6): 1429- 1438.
doi: 10.1016/S1003-6326(20)65308-0
35 LEE S H , JUNG J G , BAIK S I , et al. Effects of Ti addition on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr alloy[J]. Materials Science and Engineering: A, 2021, 801, 140437.
doi: 10.1016/j.msea.2020.140437
36 刘飞, 白朴存, 侯小虎, 等. Al-Zn-Mg-Cu合金中一种新型Al3Zr-η'核壳颗粒的透射电子显微镜观察[J]. 稀有金属材料与工程, 2018, 47 (11): 3272- 3276.
36 LIU F , BAI P C , HOU X H , et al. Transmission electron microscopic observation of a novel Al3Zr-η' core-shell particle in Al-Zn-Mg-Cu alloy[J]. Rare Metal Materials and Engineering, 2018, 47 (11): 3272- 3276.
37 聂祚仁, 文胜平, 黄晖, 等. 铒微合金化铝合金的研究进展[J]. 中国有色金属学报, 2011, 21 (10): 2361- 2370.
37 NIE Z R , WEN S P , HUANG H , et al. Research progress of Er-containing aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (10): 2361- 2370.
38 WU H , WEN S P , LU J T , et al. Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Sc and Er additions during homogenization[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (7): 1476- 1482.
doi: 10.1016/S1003-6326(17)60168-7
39 WANG Y , WU X , CAO L , et al. Effect of trace Er on the microstructure and properties of Al-Zn-Mg-Cu-Zr alloys during heat treatments[J]. Materials Science and Engineering: A, 2020, 792, 139807.
doi: 10.1016/j.msea.2020.139807
40 LI J , ZHANG Y , CAO X , et al. Accelerated discovery of high-strength aluminum alloys by machine learning[J]. Communications Materials, 2020, 1 (1): 1- 10.
doi: 10.1038/s43246-019-0005-6
41 ZHANG X , MEI F , ZHANG H , et al. Effects of Gd and Y additions on microstructure and properties of Al-Zn-Mg-Cu-Zr alloys[J]. Materials Science and Engineering: A, 2012, 552, 230- 235.
doi: 10.1016/j.msea.2012.05.035
42 WANG Y , PAN Q L , SONG Y F , et al. Recrystallization of Al-5.8Mg-Mn-Sc-Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (11): 3235- 3241.
doi: 10.1016/S1003-6326(13)62858-7
43 LIU J , YAO P , ZHAO N , et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657, 717- 725.
doi: 10.1016/j.jallcom.2015.10.122
44 方华婵, 巢宏, 陈康华, 等. Zr, Yb, Cr对Al-Zn-Mg-Cu合金组织、断裂和局部腐蚀行为的影响[J]. 稀有金属, 2015, 39 (8): 686- 695.
44 FANG H C , CHAO H , CHEN K H , et al. Microstructure, fracture and localized corrosion behavior of Al-Zn-Mg-Cu alloy with Zr, Yb, Cr additions[J]. Chinese Journal of Rare Metals, 2015, 39 (8): 686- 695.
45 DESCHAMPS A , FRIBOURG G , BRECHET Y , et al. In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2012, 60 (5): 1905- 1916.
doi: 10.1016/j.actamat.2012.01.002
46 JIANG J , JIANG F , ZHANG M , et al. Al3(Sc, Zr) precipitation in deformed Al-Mg-Mn-Sc-Zr alloy: effect of annealing temperature and dislocation density[J]. Journal of Alloys and Compounds, 2020, 831, 154856.
doi: 10.1016/j.jallcom.2020.154856
47 SCHOBEL M , PONGRATZ P , DEGISCHER H P . Coherency loss of Al3(Sc, Zr) precipitates by deformation of an Al-Zn-Mg alloy[J]. Acta Materialia, 2012, 60 (10): 4247- 4254.
doi: 10.1016/j.actamat.2012.04.011
48 ZUO J , HOU L , SHI J , et al. Effect of deformation induced precipitation on dynamic aging process and improvement of mechanical/corrosion properties AA7055 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 708, 1131- 1140.
doi: 10.1016/j.jallcom.2017.03.091
49 XIAO Y P , PAN Q L , LI W B , et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2011, 32 (4): 2149- 2156.
50 DENG Y , YIN Z , ZHAO K , et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behaviour of an Al-Zn-Mg alloy[J]. Corrosion Science, 2012, 65, 288- 298.
doi: 10.1016/j.corsci.2012.08.024
51 CAVANAUGH M K , BUCHHEIT R G , BIRHILIS N . Evaluation of a simple microstructural-electrochemical model for corrosion damage accumulation in microstructurally complex aluminum alloys[J]. Engineering Fracture Mechanics, 2009, 76 (5): 641- 650.
doi: 10.1016/j.engfracmech.2008.11.003
52 WLOKA J , VIRTANEN S . Influence of scandium on the pitting behaviour of Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2007, 55 (19): 6666- 6672.
doi: 10.1016/j.actamat.2007.08.021
53 DENG Y , YANG Z , ZHANG G . Nanostructure characteristics of Al3Sc1-xZrx nanoparticles and their effects on mechanical property and SCC behavior of Al-Zn-Mg alloys[J]. Materials, 2020, 13 (8): 1909.
doi: 10.3390/ma13081909
54 CHEN K H , FANG H C , ZHANG Z , et al. Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering: A, 2008, 497 (1/2): 426- 431.
55 FANG H C , CHEN K H , CHEN X , et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering: A, 2011, 528 (25/26): 7606- 7615.
56 徐道芬, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34 (8): 8100- 8105.
56 XU D F , HU G Y , CHEN S Y . Effect of trace rare earth Ce on microstructure and corrosion properties of Al-Zn-Mg aluminum alloy[J]. Materials Reports, 2020, 34 (8): 8100- 8105.
57 周亮, 彭振凌, 张星临, 等. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33 (2): 314- 320.
57 ZHOU L , PENG Z L , ZHANG X L , et al. Effect of trace Co on microstructure and corrosion properties of 7056 aluminum alloy[J]. Materials Reports, 2019, 33 (2): 314- 320.
[1] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[2] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[3] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[4] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[5] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[6] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[7] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[8] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[9] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[10] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[11] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[12] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[13] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[14] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[15] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn