Al-Zn-Mg series aluminum alloys have important applications in aerospace, transportation etc, for their excellent properties of low density and high strength. Further optimizing the microstructure to obtain higher mechanical properties and better corrosion resistance is the development direction of Al-Zn-Mg alloys. Microalloying has become an important means of improving the properties of aluminum alloys, owing to the limited space for alloy composition optimization and heat treatment processes improvement. The effects of microalloying elements on the mechanical properties, hot deformation behavior and corrosion resistance of Al-Zn-Mg alloys were briefly summarized, focusing on the different effects of the second phase particles formed by microalloying elements in different process stages, such as effectively refine grains and strongly hinder the movement of dislocations. The effects of pin grain boundaries, sub-grain boundaries and inhibiting recrystallization during hot deformation were discussed. The internal mechanism of improving the corrosion resistance of the alloy was explained. In addition, the further research direction of microalloying of Al-Zn-Mg aluminum alloy was prospected, understanding the interaction mechanism of microalloying elements and dual alloying-microalloying elements to realize the precise and accurate addition of microalloying elements will be one of the main research contents in the future. Clarifying the regulation effect of microalloying elements on deformation structures and dislocation configurations during hot working will provide a reference for improving the corrosion resistance of alloys.
LIU Y F , TIAN W , SUN Y . Research progress of microalloying of Al-Zn-Mg-Cu aluminum alloy[J]. Nonferrous Metal Materials and Engineering, 2018, 39 (1): 38- 41.
2
ROMETSCH P A , ZHANG Y , KNIGHT S . Heat treatment of 7××× series aluminum alloys-some recent developments[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (7): 2003- 2017.
doi: 10.1016/S1003-6326(14)63306-9
CHEN Z G , YANG W L , WANG S Y , et al. Research progress of microalloyed aluminum alloy[J]. Rare Metal Materials and Engineering, 2010, 39 (8): 1499- 1504.
YAN Y C , HUANG B , LI W J , et al. Research progress of Al-Zn-Mg-Cu ultra-high strength aluminum alloys[J]. Materials Reports, 2018, 32 (Suppl 2): 358- 364.
6
AZARNIYA A , TAHERI A K , TAHERI K K . Recent advances in ageing of 7××× series aluminum alloys: a physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781, 945- 983.
doi: 10.1016/j.jallcom.2018.11.286
7
DONG P , CHEN S , CHEN K . Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy[J]. Journal of Alloys and Compounds, 2019, 788, 329- 337.
doi: 10.1016/j.jallcom.2019.02.228
8
WEN K , XIONG B , REN W , et al. Fe-rich particles influenced secondary crack characteristics in an Al-Zn-Mg-Cu alloy extrusion plate with high zinc content[J]. Scripta Materialia, 2020, 186, 259- 262.
doi: 10.1016/j.scriptamat.2020.05.045
9
WEN K , XIONG B Q , ZHANG Y A , et al. Aging precipitation characteristics and tensile properties of Al-Zn-Mg-Cu alloys with different additional Zn contents[J]. Rare Metals, 2020, 40 (8): 2610- 2166.
GAO Y H , LIU G , SUN J . Recent progress of high-temperature resistant aluminum-based alloys: microstructure design and precipitation strategy[J]. Acta Metallurgica Sinica, 2021, 57 (2): 129- 149.
ZHAO H , ZHAO F , YANG C L , et al. Effect of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys[J]. Journal of Materials Engineering, 2020, 48 (5): 112- 119.
13
ZHENG Z Q , LIU W Q , LIAO Z Q , et al. Solute clustering and solute nanostructures in an Al-3.5Cu-0.4Mg-0.2Ge alloy[J]. Acta Materialia, 2013, 61 (10): 3724- 3734.
doi: 10.1016/j.actamat.2013.03.004
14
LIU M , BANHART J . Effect of Cu and Ge on solute clustering in Al-Mg-Si alloys[J]. Materials Science and Engineering: A, 2016, 658, 238- 245.
doi: 10.1016/j.msea.2016.01.095
15
ZHANG Y , ZHANG Z , MEDHEKAR N V , et al. Vacancy-tuned precipitation pathways in Al-1.7Cu-0.025In-0.025Sb (at.%) alloy[J]. Acta Materialia, 2017, 141, 341- 351.
doi: 10.1016/j.actamat.2017.09.025
16
ZHOU X , LIU Z , BAI S , et al. The influence of various Ag additions on the nucleation and thermal stability of Ω phase in Al-Cu-Mg alloys[J]. Materials Science and Engineering: A, 2013, 564, 186- 191.
doi: 10.1016/j.msea.2012.11.081
17
ROSALIE J M , BOURGEOIS L . Silver segregation to θ'(Al2Cu)-Al interfaces in Al-Cu-Ag alloys[J]. Acta Materialia, 2012, 60 (17): 6033- 6041.
doi: 10.1016/j.actamat.2012.07.039
18
GAO Y H , GUAN P F , SU R , et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance[J]. Materials Research Letters, 2020, 8 (12): 446- 453.
doi: 10.1080/21663831.2020.1799447
19
ZHANG J Y , GAO Y H , YANG C , et al. Microalloying Al alloys with Sc: a review[J]. Rare Metals, 2020, 39 (6): 636- 650.
doi: 10.1007/s12598-020-01433-1
20
KUMAR N , MISHRA R S . Additivity of strengthening mechanisms in ultrafine grained Al-Mg-Sc alloy[J]. Materials Science and Engineering: A, 2013, 580, 175- 183.
doi: 10.1016/j.msea.2013.05.006
21
POLMEAR I . A trace element effect in alloys based on the aluminum-zinc-magnesium system[J]. Nature, 1960, 186 (4721): 303- 304.
doi: 10.1038/186303a0
22
MACCHI C E , SOMOZA A , DUPASQUIER A , et al. Secondary precipitation in Al-Zn-Mg-(Ag) alloys[J]. Acta Materialia, 2003, 51 (17): 5151- 5158.
doi: 10.1016/S1359-6454(03)00364-1
23
MALONEY S , HONO K , POLMEAR I , et al. The effects of a trace addition of silver upon elevated temperature ageing of an Al-Zn-Mg alloy[J]. Micron, 2001, 32 (8): 741- 747.
doi: 10.1016/S0968-4328(00)00081-0
24
OGURA T , HIROSAWA S , CEREZO A , et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg(-Ag) alloys[J]. Acta Materialia, 2010, 58 (17): 5714- 5723.
doi: 10.1016/j.actamat.2010.06.046
25
ZHU Q , CAO L , WU X , et al. Effect of Ag on age-hardening response of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering: A, 2019, 754, 265- 268.
doi: 10.1016/j.msea.2019.03.090
26
BOOTH-MORRISON C , DUNAND D C , SEIDMAN D N . Coarsening resistance at 400 ℃ of precipitation-strengthened Al-Zr-Sc-Er alloys[J]. Acta Materialia, 2010, 59 (18): 7029- 7042.
27
YANG C , ZHANG P , SHAO D , et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition[J]. Acta Materialia, 2016, 119, 68- 79.
doi: 10.1016/j.actamat.2016.08.013
28
SUN Y , PAN Q , LUO Y , et al. Study on the primary Al3Sc phase and the structure heredity of Al-Zn-Mg-Cu-Sc-Zr alloy[J]. Materials Characterization, 2020, 169, 110601.
doi: 10.1016/j.matchar.2020.110601
29
SENKOV O , BHAT R , SENKOVA S , et al. Microstructure and properties of cast ingots of Al-Zn-Mg-Cu alloys modified with Sc and Zr[J]. Metallurgical and Materials Transactions A, 2005, 36 (8): 2115- 2126.
doi: 10.1007/s11661-005-0332-8
30
SENKOV O N , SHAGIEV M R , SENKOVA S V , et al. Precipitation of Al3(Sc, Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia, 2008, 56 (15): 3723- 3738.
doi: 10.1016/j.actamat.2008.04.005
31
FULLER C , MURRAY J , SEIDMAN D N . Temporal evolution of the nanostructure of Al3(Sc, Zr) alloys: part I-chemical compositions of Al3(ScZr) precipitates[J]. Acta Materialia, 2005, 53 (20): 5401- 5413.
doi: 10.1016/j.actamat.2005.08.016
32
HUANG X , PAN Q , LI B , et al. Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloy sheet with trace amount of Sc[J]. Journal of Alloys and Compounds, 2015, 650, 805- 820.
doi: 10.1016/j.jallcom.2015.08.011
33
LI B , PAN Q , CHEN C , et al. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr[J]. Journal of Alloys and Compounds, 2016, 664, 553- 564.
doi: 10.1016/j.jallcom.2016.01.016
34
XIAO Q F , HUANG J W , JIANG Y G , et al. Effects of minor Sc and Zr additions on mechanical properties and microstructure evolution of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (6): 1429- 1438.
doi: 10.1016/S1003-6326(20)65308-0
35
LEE S H , JUNG J G , BAIK S I , et al. Effects of Ti addition on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr alloy[J]. Materials Science and Engineering: A, 2021, 801, 140437.
doi: 10.1016/j.msea.2020.140437
LIU F , BAI P C , HOU X H , et al. Transmission electron microscopic observation of a novel Al3Zr-η' core-shell particle in Al-Zn-Mg-Cu alloy[J]. Rare Metal Materials and Engineering, 2018, 47 (11): 3272- 3276.
NIE Z R , WEN S P , HUANG H , et al. Research progress of Er-containing aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (10): 2361- 2370.
38
WU H , WEN S P , LU J T , et al. Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Sc and Er additions during homogenization[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (7): 1476- 1482.
doi: 10.1016/S1003-6326(17)60168-7
39
WANG Y , WU X , CAO L , et al. Effect of trace Er on the microstructure and properties of Al-Zn-Mg-Cu-Zr alloys during heat treatments[J]. Materials Science and Engineering: A, 2020, 792, 139807.
doi: 10.1016/j.msea.2020.139807
40
LI J , ZHANG Y , CAO X , et al. Accelerated discovery of high-strength aluminum alloys by machine learning[J]. Communications Materials, 2020, 1 (1): 1- 10.
doi: 10.1038/s43246-019-0005-6
41
ZHANG X , MEI F , ZHANG H , et al. Effects of Gd and Y additions on microstructure and properties of Al-Zn-Mg-Cu-Zr alloys[J]. Materials Science and Engineering: A, 2012, 552, 230- 235.
doi: 10.1016/j.msea.2012.05.035
42
WANG Y , PAN Q L , SONG Y F , et al. Recrystallization of Al-5.8Mg-Mn-Sc-Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (11): 3235- 3241.
doi: 10.1016/S1003-6326(13)62858-7
43
LIU J , YAO P , ZHAO N , et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657, 717- 725.
doi: 10.1016/j.jallcom.2015.10.122
FANG H C , CHAO H , CHEN K H , et al. Microstructure, fracture and localized corrosion behavior of Al-Zn-Mg-Cu alloy with Zr, Yb, Cr additions[J]. Chinese Journal of Rare Metals, 2015, 39 (8): 686- 695.
45
DESCHAMPS A , FRIBOURG G , BRECHET Y , et al. In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2012, 60 (5): 1905- 1916.
doi: 10.1016/j.actamat.2012.01.002
46
JIANG J , JIANG F , ZHANG M , et al. Al3(Sc, Zr) precipitation in deformed Al-Mg-Mn-Sc-Zr alloy: effect of annealing temperature and dislocation density[J]. Journal of Alloys and Compounds, 2020, 831, 154856.
doi: 10.1016/j.jallcom.2020.154856
47
SCHOBEL M , PONGRATZ P , DEGISCHER H P . Coherency loss of Al3(Sc, Zr) precipitates by deformation of an Al-Zn-Mg alloy[J]. Acta Materialia, 2012, 60 (10): 4247- 4254.
doi: 10.1016/j.actamat.2012.04.011
48
ZUO J , HOU L , SHI J , et al. Effect of deformation induced precipitation on dynamic aging process and improvement of mechanical/corrosion properties AA7055 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 708, 1131- 1140.
doi: 10.1016/j.jallcom.2017.03.091
49
XIAO Y P , PAN Q L , LI W B , et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2011, 32 (4): 2149- 2156.
50
DENG Y , YIN Z , ZHAO K , et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behaviour of an Al-Zn-Mg alloy[J]. Corrosion Science, 2012, 65, 288- 298.
doi: 10.1016/j.corsci.2012.08.024
51
CAVANAUGH M K , BUCHHEIT R G , BIRHILIS N . Evaluation of a simple microstructural-electrochemical model for corrosion damage accumulation in microstructurally complex aluminum alloys[J]. Engineering Fracture Mechanics, 2009, 76 (5): 641- 650.
doi: 10.1016/j.engfracmech.2008.11.003
52
WLOKA J , VIRTANEN S . Influence of scandium on the pitting behaviour of Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2007, 55 (19): 6666- 6672.
doi: 10.1016/j.actamat.2007.08.021
53
DENG Y , YANG Z , ZHANG G . Nanostructure characteristics of Al3Sc1-xZrx nanoparticles and their effects on mechanical property and SCC behavior of Al-Zn-Mg alloys[J]. Materials, 2020, 13 (8): 1909.
doi: 10.3390/ma13081909
54
CHEN K H , FANG H C , ZHANG Z , et al. Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering: A, 2008, 497 (1/2): 426- 431.
55
FANG H C , CHEN K H , CHEN X , et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering: A, 2011, 528 (25/26): 7606- 7615.
XU D F , HU G Y , CHEN S Y . Effect of trace rare earth Ce on microstructure and corrosion properties of Al-Zn-Mg aluminum alloy[J]. Materials Reports, 2020, 34 (8): 8100- 8105.
ZHOU L , PENG Z L , ZHANG X L , et al. Effect of trace Co on microstructure and corrosion properties of 7056 aluminum alloy[J]. Materials Reports, 2019, 33 (2): 314- 320.