Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 124-132    DOI: 10.11868/j.issn.1001-4381.2021.001109
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
镁合金超疏水环氧复合涂层的制备与性能
夏先朝1,2, 冯学磊3, 孙京丽1,*(), 聂敬敬1, 庞松1, 袁勇1, 董泽华2,*()
1 上海航天精密机械研究所, 上海 201600
2 华中科技大学 化学与化工学院, 武汉 430074
3 宁东能源化工基地管委会, 银川 750411
Preparation and properties of superhydrophobic epoxy composite coatings on magnesium alloys
Xianchao XIA1,2, Xuelei FENG3, Jingli SUN1,*(), Jingjing NIE1, Song PANG1, Yong YUAN1, Zehua DONG2,*()
1 Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
2 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3 Management Committee of Ningdong Energy Chemical Industry Base, Yinchuan 750411, China
全文: PDF(1181 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

传统的超疏水表面的制备过程比较复杂,机械稳定性差,这严重制约了超疏水表面的实际应用。采用“黏合剂+纳米粒子”的方法,在镁合金表面制备一种无氟、持久稳定的超疏水环氧复合涂层。接触角测试结果表明,复合涂层的接触角最高可达160.2°,且在3.5%(质量分数)NaCl溶液中浸泡30天后,接触角仍然高达103°;EIS结果表明,在5个加速老化循环周期后,复合涂层的|Z|0.01 Hz仍高于109 Ω·cm2,展现出优异的耐盐雾性能和耐蚀性能;摩擦磨损实验结果显示,在19.6 N的载荷下机械摩擦8 h后,复合涂层的|Z|0.01 Hz高达1.84×109 Ω·cm2。通过“空气垫”的屏障作用,复合涂层能够为镁合金提供高效且持久的腐蚀防护,“黏合剂+纳米粒子”策略为超疏水涂层的制备提供了新的思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏先朝
冯学磊
孙京丽
聂敬敬
庞松
袁勇
董泽华
关键词 镁合金超疏水涂层腐蚀防护环氧涂层    
Abstract

The traditional preparation process of superhydrophobic surfaces(SHS) is complicated and the mechanical stability of SHS is less than satisfactory in most cases, which seriously restricts the practical application. The "binder+nanoparticles" strategy was used to prepare a nonfluorinated, durable and stable superhydrophobic epoxy composite coating on magnesium alloy. The contact angle test results show that the maximum contact angle of the composite coating is 160.2°, and the contact angle is still as high as 103° even after 30 days of soaking in 3.5%(mass fraction) NaCl solution; EIS results indicate that the |Z|0.01 Hz of the composite coating is still above 109 Ω·cm2 even after five accelerated aging cycles, demonstrating excellent resistance to salt fog and anticorrosion performance; Friction and wear test results reveal that the |Z|0.01 Hz of the composite coating is as high as 1.84×109 Ω·cm2 after mechanical friction under 19.6 N load for 8 h. Due to the excellent blocking barrier of "air cushion", the composite coating can provide efficient and durable corrosion protection for magnesium alloy and the "adhesive+nanoparticles" strategy provides a new direction for the preparation of superhydrophobic coating.

Key wordsmagnesium alloy    superhydrophobic coating    corrosion protection    epoxy coating
收稿日期: 2021-11-15      出版日期: 2022-08-16
中图分类号:  TL214+.6  
基金资助:国家自然科学基金项目(51771079)
通讯作者: 孙京丽,董泽华     E-mail: sunjingli1221@126.com;zhdong@hust.edu.cn
作者简介: 董泽华(1968—),男,教授,博士,研究方向为金属的腐蚀与防护、腐蚀监测,联系地址:湖北省武汉市珞喻路1037号华中科技大学化学与化工学院(430074),E-mail: zhdong@hust.edu.cn
孙京丽(1985—),女,高级工程师,博士,研究方向为金属功能材料和镁合金的环境适应性,联系地址:上海市松江区贵德路76号上海航天精密机械研究所(201600),E-mail: sunjingli1221@126.com
引用本文:   
夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
Xianchao XIA, Xuelei FENG, Jingli SUN, Jingjing NIE, Song PANG, Yong YUAN, Zehua DONG. Preparation and properties of superhydrophobic epoxy composite coatings on magnesium alloys. Journal of Materials Engineering, 2022, 50(8): 124-132.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001109      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/124
Fig.1  SH-SiO2/EP超疏水涂层的制备流程图
Fig.2  SiO2和SH-SiO2粒子的红外图谱
Fig.3  SiO2(a)和SH-SiO2(b)粒子的润湿性
Fig.4  SiO2(a)和SH-SiO2(b)的TEM形貌及元素面分布图
Fig.5  SH-SiO2/EP涂层的接触角随SH-SiO2含量的变化
Fig.6  SH-SiO2/EP试样倾斜5°时水滴在涂层表面的滚动行为
Fig.7  SH-SiO2/EP涂层表面上水滴形态(a)和水流形态(b)的光学图片
Fig.8  SH-SiO2/EP涂层的SEM形貌(a)和3D原子力形貌(b)
Fig.9  SH-SiO2/EP涂层的接触角随浸泡时间(a)和摩擦次数(b)的变化
Fig.10  不同加速老化循环次数后涂层试样的EIS图
(a)EP涂层;(b)SH-SiO2/EP涂层;(1)Nyquist图;(2)Bode图
Fig.11  EP和SH-SiO2/EP涂层试样的|Z|0.01 Hz随加速老化循环次数的变化
Fig.12  SH-SiO2/EP涂层的摩擦因数随摩擦时间的变化
Fig.13  SH-SiO2/EP涂层的EIS随摩擦时间的变化
(a)Nyquist图;(b)Bode图
1 袁杰, 郭宝会. Mg合金在汽车工业中的应用进展[J]. 铸造技术, 2017, 38 (12): 2799- 2804.
1 YUAN J , GUO B H . Research advances of magnesium alloys in automobile applications[J]. Foundry Technology, 2017, 38 (12): 2799- 2804.
2 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天, 2016, 22 (3): 281- 292.
doi: 10.3969/j.issn.1674-5825.2016.03.002
2 WU G H , CHEN Y S , DING W J . Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22 (3): 281- 292.
doi: 10.3969/j.issn.1674-5825.2016.03.002
3 XIAO L , DENG M , ZENG W G , et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide[J]. Industrial & Engineering Chemistry Research, 2017, 56 (43): 12354- 12361.
4 FURSTNER R , BARTHLOTT W , NEINHUIS C , et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21 (3): 956- 961.
doi: 10.1021/la0401011
5 何志伟, 沈子航, 邱焕逸, 等. 铝基防冰表面的研究进展[J]. 材料工程, 2021, 49 (9): 41- 50.
5 HE Z W , SHEN Z H , QIU H Y , et al. Research progress in aluminum-based anti-icing surfaces[J]. Journal of Materials Engineering, 2021, 49 (9): 41- 50.
6 SHEN Y , WU Y , TAO J , et al. Spraying fabrication of durable and transparent coatings for anti-icing application: dynamic water repellency, icing delay, and ice adhesion[J]. ACS Applied Materials & Interfaces, 2018, 11 (3): 3590- 3598.
7 ZULFIQAR U , HUSSAIN S Z , SUBHANI T , et al. Mechanically robust superhydrophobic coating from sawdust particles and carbon soot for oil/water separation[J]. Colloids and Surfaces A, 2018, 539, 391- 398.
doi: 10.1016/j.colsurfa.2017.12.047
8 VAZIRINASAB E , JAFARI R , MOMEN G . Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surface and Coatings Technology, 2018, 341, 40- 56.
doi: 10.1016/j.surfcoat.2017.11.053
9 DAS S , KUMAR S , SAMAL S K , et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57 (8): 2727- 2745.
10 LIU K , ZHANG M , ZHAI J , et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Applied Physics Letters, 2008, 92 (18): 183103- 183106.
doi: 10.1063/1.2917463
11 朱亚利, 范伟博, 冯利邦, 等. 超疏水镁合金表面的防黏附和耐腐蚀性能[J]. 材料工程, 2016, 44 (1): 66- 70.
11 ZHU Y L , FAN W B , FENG L B , et al. Anti-adhesion and corrosion resistance of superhydrophobic magnesium alloy surface[J]. Journal of Materials Engineering, 2016, 44 (1): 66- 70.
12 KOBINA S E , KOBINA S D , LV X , et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373, 531- 546.
doi: 10.1016/j.cej.2019.05.077
13 GUO C , FENG L , ZHAI J , et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer[J]. ChemPhysChem, 2004, 5 (5): 750- 753.
doi: 10.1002/cphc.200400013
14 ZHAI L , CEBECI F C , COHEN R E , et al. Stable superhydrophobic coatings from polyelectrolyte multilayers[J]. Nano Letters, 2004, 4 (7): 1349- 1353.
doi: 10.1021/nl049463j
15 QIAN B , SHEN Z . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21 (20): 9007- 9009.
doi: 10.1021/la051308c
16 XU W , SONG J , SUN J , et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Applied Materials & Interfaces, 2011, 3 (11): 4404- 4414.
17 LAU K K , BICO J , TEO K B , et al. Superhydrophobic carbon nanotube forests[J]. Nano Letters, 2003, 3 (12): 1701- 1705.
doi: 10.1021/nl034704t
18 王帅. 静电纺丝法制备功能性超疏水材料[D]. 长春: 吉林大学, 2013.
18 WANG S. Preparation of functional superhydrophobic materials by electrospinning[D]. Changchun: Jilin University, 2013.
19 JOUNG Y S , BUIE C R . Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces[J]. Langmuir, 2011, 27 (7): 4156- 4163.
doi: 10.1021/la200286t
20 LI Y , LI B , ZHAO X , et al. Totally waterborne, nonfluorinated, mechanically robust and self-healing superhydrophobic coatings for actual anti-icing[J]. ACS Applied Materials & Interfaces, 2018, 10 (45): 39391- 39399.
21 WANG D , SUN Q , HOKKANEN M J , et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582 (7810): 55- 59.
doi: 10.1038/s41586-020-2331-8
22 LI C , LAI H , CHENG Z , et al. Coating "nano-armor" for robust superwetting micro/nanostructure[J]. Chemical Engineering Journal, 2020, 385, 123924- 123933.
doi: 10.1016/j.cej.2019.123924
23 WANG Y , LIU Y , LI J , et al. Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration[J]. Chemical Engineering Journal, 2020, 390, 124311- 124317.
doi: 10.1016/j.cej.2020.124311
24 XIA X C , CAO X K , CAI G Y , et al. Underwater superoleophobic composite coating characteristic of durable antifouling and anticorrosion properties in marine environment[J]. Colloids and Surfaces A, 2021, 628, 127323- 127336.
doi: 10.1016/j.colsurfa.2021.127323
25 李为民, 彭超义, 杨金水, 等. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48 (7): 162- 169.
25 LI W M , PENG C Y , YANG J S , et al. Preparation of all-organic superhydrophobic PTFE/epoxy composite coatings[J]. Journal of Materials Engineering, 2020, 48 (7): 162- 169.
26 RAO A V , LATTHE S S , MAHADIK S A , et al. Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate[J]. Applied Surface Science, 2011, 257 (13): 5772- 5776.
doi: 10.1016/j.apsusc.2011.01.099
27 GUO F , WEN Q , PENG Y , et al. Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties[J]. Journal of Colloid and Interface Science, 2017, 494, 54- 63.
doi: 10.1016/j.jcis.2017.01.070
28 JIANG D , XIA X , HOU J , et al. Enhanced corrosion barrier of microarc-oxidized Mg alloy by self-healing superhydrophobic silica coating[J]. Industrial & Engineering Chemistry Research, 2018, 58 (1): 165- 178.
[1] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[2] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[3] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[4] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[5] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[6] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[7] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[8] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[9] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[10] 阴明, 孙俊丽, 鲍同尧, 刘笑达, 杜华云, 卫英慧, 侯利锋. 合金元素对镁合金耐腐蚀性能影响的研究进展[J]. 材料工程, 2021, 49(12): 28-39.
[11] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[12] 黄居峰, 宋光铃. 镁合金阳极的析氢、效率与电偶腐蚀放大效应[J]. 材料工程, 2021, 49(12): 48-56.
[13] 李忠盛, 吴护林, 丁星星, 黄安畏, 宋凯强, 詹青青, 丛大龙. AZ80镁合金表面冷喷涂铝/微弧氧化复合涂层耐蚀性能[J]. 材料工程, 2021, 49(12): 57-64.
[14] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[15] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn