Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 148-156    DOI: 10.11868/j.issn.1001-4381.2021.001125
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PEO基固态聚合物电解质膜的静电纺丝制备及性能
曹倩1, 杨晶晶1,*(), 陈卫星1,*(), 王趁红2, 吴新明1, 雷亚萍1
1 西安工业大学 材料与化工学院, 西安 710021
2 北京泰德制药股份有限公司, 北京 100176
Preparation and properties of solid polymer electrolyte membranes based on PEO by electrospinning
Qian CAO1, Jingjing YANG1,*(), Weixing CHEN1,*(), Chenhong WANG2, Xinming WU1, Yaping LEI1
1 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
2 Beijing Tide Pharmaceutical Co., Ltd., Beijing 100176, China
全文: PDF(14503 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

PEO基固态聚合物电解质被认为是目前固态锂电池领域极具产业化前景的固态电解质。为适应工业化生产,采用静电纺丝技术制备PEO/LiClO4固态聚合物电解质(SPE),研究纺丝电压、纺丝液质量浓度和锂盐含量对SPE纤维膜形貌和直径的影响。通过扫描电子显微镜观察SPE中纤维的形貌,利用Image J软件分析SPE纤维的直径。通过DSC,XRD,FTIR-ATR和拉伸测试等手段对静电纺丝制备的SPE纤维膜的组成、结构、性能等进行研究。结果表明:当纺丝电压为15 kV、PEO/LiClO4纺丝液质量浓度为6%、[EO]∶[Li+]=10∶1(摩尔比)时,静电纺丝方法制备的PEO/LiClO4SPE纤维膜具有较好的纤维形貌,平均直径为557 nm,分布均一;当[EO]∶[Li+]=10∶1时,SPE纤维膜中PEO的熔点仅为53.8℃,结晶度低至18.9%;电解质在30℃时的离子电导率达到5.16×10-5 S·cm-1,同时具备良好的电化学稳定性和界面稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹倩
杨晶晶
陈卫星
王趁红
吴新明
雷亚萍
关键词 固态聚合物电解质聚氧化乙烯静电纺丝纤维离子电导率    
Abstract

PEO-based solid polymer electrolytes are considered as a promising solid electrolyte in the field of solid-state lithium batteries.PEO/LiClO4 solid polymer electrolyte(SPE) was prepared through electrostatic spinning technology, in order to meet the demand of industrial production. The effects of spinning voltage, spinning solution concentration and lithium salt content on the morphology and diameter of the fiber were studied.The morphology of SPE fiber was observed by scanning electron microscope and the diameter of SPE fiber was analysed by Image J.Furthermore, the composition, structure and properties of solid polymer electrolyte fiber membranes prepared by electrospinning were studied by DSC, XRD, FTIR-ATR and tensile testing.The results show that the PEO/LiClO4 solid polymer electrolyte membrane prepared by electrostatic spinning method has good fiber morphology, when the spinning voltage is 15 kV, and the concentration of PEO/LiClO4 spinning solution is 6%, and the molar ratio ([EO]: [Li+]) is 10:1.Meanwhile, the average diameter of the fibers is 557 nm, giving relatively uniform distribution.When[EO]: [Li+]=10:1, the melting point of PEO in the SPE fiber membrane is only 53.8℃, with the crystallinity as low as 18.9%. And the ionic conductivity of the prepared SPE exhibits as high as 5.16×10-5 S·cm-1 at 30℃.Moreover, the prepared electrospun SPE has good electrochemical stability and interfacial stability.

Key wordssolid polymer electrolyte    polyethylene oxide    electrospinning    fiber    ionic conductivity
收稿日期: 2021-11-18      出版日期: 2022-10-24
中图分类号:  O632  
基金资助:陕西省自然科学基金面上项目(2021JM-427);陕西省自然科学基金-企业-陕煤联合项目(2021JLM-36)
通讯作者: 杨晶晶,陈卫星     E-mail: yangjingjing@xatu.edu.cn;chenwx@xatu.edu.cn
作者简介: 陈卫星(1972—), 男, 教授, 博士, 研究方向为功能高分子材料的合成及应用, 联系地址: 陕西省西安市西安工业大学未央校区材料与化工学院(710021), E-mail: chenwx@xatu.edu.cn
杨晶晶(1985—), 女, 副教授, 博士, 研究方向为固态聚合物电解质的制备与应用, 联系地址: 陕西省西安市西安工业大学未央校区材料与化工学院(710021), E-mail: yangjingjing@xatu.edu.cn
引用本文:   
曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
Qian CAO, Jingjing YANG, Weixing CHEN, Chenhong WANG, Xinming WU, Yaping LEI. Preparation and properties of solid polymer electrolyte membranes based on PEO by electrospinning. Journal of Materials Engineering, 2022, 50(10): 148-156.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001125      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/148
Fig.1  SPE纤维膜的制备流程
Fig.2  不同电压下SPE纤维膜的SEM照片
(a)13 kV;(b)15 kV;(c)17 kV;(d)19 kV
Fig.3  不同纺丝液质量浓度时SPE纤维膜的SEM照片
(a)4%;(b)5%;(c)6%;(d)7%
Fig.4  不同锂盐含量时SPE纤维膜的SEM照片
(a)[EO]∶[Li+]=20∶1;(b)[EO]∶[Li+]=15∶1;(c)[EO]∶[Li+]=13∶1;(d)[EO]∶[Li+]=10∶1
Fig.5  不同锂盐含量SPE纤维膜的DSC曲线(a)和XRD谱图(b)
Sample Tm/℃ ΔHm/(J·g-1) Xc/%
[EO]∶[Li+]=20∶1 66.2 145.0 73.6
[EO]∶[Li+]=15∶1 58.3 72.0 36.5
[EO]∶[Li+]=13∶1 56.2 53.2 27.0
[EO]∶[Li+]=10∶1 53.8 37.2 18.9
Table 1  PEO/LiClO4 SPE纤维膜的Tm, ΔHmΧc
Fig.6  不同锂盐含量SPE纤维膜的FTIR-ATR谱图(a)和[EO]∶[Li+]=10∶1时SPE浇铸膜和纤维膜的应力-应变曲线(b)
Sample A625 A638 A625/A638
[EO]∶[Li+]=20∶1 0.8065 0.7728 1.04
[EO]∶[Li+]=15∶1 0.8328 0.7954 1.05
[EO]∶[Li+]=13∶1 0.8786 0.8183 1.07
[EO]∶[Li+]=10∶1 1.0874 0.9104 1.20
Table 2  不同锂盐含量SPE纤维膜的FTIR-ATR谱图分析结果
Fig.7  30 ℃下不同锂盐含量SPE纤维膜和浇铸膜的阻抗谱(a)和其离子电导率随温度变化曲线(b)
Fig.8  SPE样品的电化学性能(80 ℃)
(a), (b)SPE纤维膜, 浇铸膜的计时电流法分析曲线;(c)SPE纤维膜和浇铸膜的LSV曲线;(d)组装的Li/SPE纤维膜/Li及Li/SPE浇铸膜/Li对称电池的长循环电压曲线
1 WANG Y , WANG X , YE H , et al. Carbon coated halloysite nanotubes as efficient sulfur host materials for lithium sulfur batteries[J]. Applied Clay Science, 2019, 179 (10): 105172- 105179.
2 NAVARRAM A , LOMBARDO L , BRUNI P , et al. Gel polymer electrolytes based on silica-added poly(ethylene oxide) electrospun membranes for lithium batteries[J]. Membranes, 2018, 8 (4): 126.
doi: 10.3390/membranes8040126
3 JI U C , VORONINA N , SUN Y , et al. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow[J]. Advanced Ener-gy Materials, 2020, 10 (42): 121- 134.
4 吴浩, 邱锦, 陈卫星, 等. 水铝英石/PEO/LiClO4复合固态聚合物电解质中组分相互作用对PEO结晶的影响[J]. 材料工程, 2021, 49 (1): 35- 43.
4 WU H , QIU J , CHEN W X , et al. Effect of interaction in allophane/PEO/LiClO4 composite solid polymer electrolyte on the crystallization of PEO[J]. Journal of Materials Engineering, 2021, 49 (1): 35- 43.
5 GOODENOUGH J B , PARK K S . The Li-ion rechargeable batte-ry: a perspective[J]. Journal of the American Chemical Society, 2013, 135 (4): 1167- 1176.
doi: 10.1021/ja3091438
6 BANITABA S N , SEMNANI D , KARIMI M , et al. A comparative analysis on the morphology and electrochemical performances of solution-casted and electrospun PEO-based electrolytes: the effect of fiber diameter and surface density[J]. Electrochimica Acta, 2021, 368, 137339.
doi: 10.1016/j.electacta.2020.137339
7 ZHANG S S . Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. Journal of Power Sour-ces, 2013, 231 (1): 153- 162.
8 WANG M , WU Y , QIU M , et al. Research progress in electrospi-nning engineering for all-solid-state electrolytes of lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 6 (10): 78- 85.
9 KIM H H , KIM M J , RYU S J , et al. Effect of fiber diameter on surface morphology mechanical property and cell behavior of electrospun poly(ε-caprolactone) mat[J]. Fibers and Polymers, 2016, 17 (7): 1033- 1042.
doi: 10.1007/s12221-016-6350-x
10 SHRIVER D F , DUPON R , STAINER M . Mechanism of ion conduction in alkali metal-polymer complexes[J]. Journal of Power Sources, 1983, 9 (3): 383- 388.
doi: 10.1016/0378-7753(83)87043-8
11 JANAKIRAMAN S , KHALIFA M , BISWAL R , et al. High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries[J]. Journal of Power Sources, 2020, 460, 228060.
doi: 10.1016/j.jpowsour.2020.228060
12 RAGHAVAN P , LIM D H , AHN J H , et al. Electrospun polymer nanofibers: the booming cutting edge technology[J]. Reactive and Functional Polymers, 2012, 72 (12): 915- 930.
doi: 10.1016/j.reactfunctpolym.2012.08.018
13 ZHAO S , WANG J , DU X , et al. An all-nanofiber-based ultralight stretchable triboelectric nanogenerator for self-powered wearable electronics[J]. Applied Energy Materials, 2018, 17, 439- 448.
14 LEE J , HOWELL T , ROTTMAYER M , et al. Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries[J]. Journal of the Electrochemical Society, 2019, 166 (2): 416- 422.
doi: 10.1149/2.1321902jes
15 WALKE P , FREITAG K M , KIRCHHAIN H , et al. Electrospun Li(TFSI)@polyethylene oxide membranes as solid electrolytes[J]. Journal of Inorganic and General Chemistry, 2018, 644 (24): 1863- 1874.
16 ZHANG Z , HUANG Y , GAO H , et al. MOF-derived ionic conductor enhancing polymer electrolytes with superior electroche-mical performances for all solid lithium metal batteries[J]. Journal of Membrane Science, 2020, 598, 117800- 117812.
doi: 10.1016/j.memsci.2019.117800
17 ZONG X , KIM K , FANG D , et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002, 43 (16): 4403- 4412.
doi: 10.1016/S0032-3861(02)00275-6
18 WANG C , BAI G , LIU X , et al. Favorable electrochemical performance of LiMn2O4/LiFePO4 composite electrodes attributed to composite solid electrolytes for all-solid-state lithium batteries[J]. Langmuir, 2021, 37 (7): 2349- 2354.
doi: 10.1021/acs.langmuir.0c03274
19 KOSKI A , YIM K , SHIVKUMAR S . Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Le-tters, 2004, 58 (3): 493- 497.
20 DOSHI J , RENEKER D H . Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35 (2): 151- 160.
21 JABUR A R , NAJIM M A , ABDS A . Study the effect of flow rate on some physical properties of different polymeric solutions[J]. Journal of Physics Conference Series, 2018, 10 (3): 2069- 2074.
22 LIU Y , MA X , SUN K , et al. Preparation and characterization of gel polymer electrolyte based on electrospun polyhedral oligomeric silsesquioxane-poly(methyl methacrylate)8/polyvinylidene fluoride hybrid nanofiber membranes for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 161 (22): 461- 472.
23 SURYANDARI E T , ZULFIKAR M A , MUKTI R R , et al. Preparation and characterization of poly(methyl methacrylate)(PMMA) fibers by electrospinning[J]. Key Engineering Mate-rials, 2019, 8 (11): 163- 169.
24 汪勋. PEO基复合固态电解质的制备及表征[D]. 西安: 西安工业大学, 2019.
24 WANG X. Preparation and characterization of PEO-based solid composite electrolyte[D]. Xi'an: Xi'an Technological University, 2019.
25 DING L C , LIU W , LIU Y Y , et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of mo-nodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16 (1): 459- 465.
doi: 10.1021/acs.nanolett.5b04117
26 黄晓, 吴林斌, 黄祯, 等. 锂离子固体电解质研究中的电化学测试方法[J]. 储能科学与技术, 2020, 9 (2): 479- 500.
26 HUANG X , WU L B , HUANG Z , et al. Electrochemical testing methods in the study of lithium ion solid electrolytes[J]. Energy Storage Science and Technology, 2020, 9 (2): 479- 500.
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[3] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[4] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[5] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[6] 余箫剑, 支云飞, 把明芳, 陕绍云, 倪永浩, 胡天丁. 纤维素负载金属基催化体系在有机反应中的研究进展[J]. 材料工程, 2022, 50(3): 81-89.
[7] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[8] 吕娜, 孙振, 胡雅琪, 李炳勤, 景圣皓, 张宗良, 蒋良兴, 贾明, 刘芳洋. 硫化物固态电解质Li6PS5Cl的球磨-固相烧结制备与性能[J]. 材料工程, 2022, 50(2): 103-110.
[9] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[10] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[11] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[12] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[13] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[14] 万玉玲, 胡雨璐, 许杜鑫, 黄剑波, 许凤, 吴玉英, 张学铭. 纤维素/木质素微球抗紫外薄膜制备与性能研究[J]. 材料工程, 2021, 49(7): 56-63.
[15] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn