Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 118-127    DOI: 10.11868/j.issn.1001-4381.2021.001153
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响
王大伟1,*(), 李晔1, 巨乐章2, 朱安安1
1 中国民航大学 航空工程学院, 天津 300300
2 中国民航大学 安全科学与工程学院, 天津 300300
Effect of oxygen plasma treatment on surface performance and mechanical properties of bonding interface of CFRP
Dawei WANG1,*(), Ye LI1, Yuezhang JU2, Anan ZHU1
1 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
2 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(16082 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为改善碳纤维增强复合材料(CFRP)胶接界面力学性能,采用低温氧气等离子体处理设备对CFRP进行表面处理。利用接触角测量仪、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)对CFRP表面润湿性、表面能、表面形貌、表面化学组分等进行表征,通过双悬臂梁实验(DCB)对CFRP胶接界面力学性能进行研究。结果表明:随氧气等离子体处理时间从0 s增加至30 s,表面水接触角从97°降至29°,CFRP表面润湿性达到最佳,极性分量占比显著增多;随处理时间的增加,CFRP表面粗糙度和最大高低差降低,形成较多谷峰分布的纳米级沟壑,基体表面积增大;同时,表面C—O和C=O等含氧极性官能团含量明显增加,C—C/C—H和Si—C官能团含量减少,表面污染物得到有效清除和转化;与未处理相比,经氧气等离子体处理20 s后,CFRP胶接界面最大剥离载荷和Ⅰ型断裂韧度分别提高了1.01倍(62.73 N)和1.92倍(649.21 J/m2)。研究发现,氧气等离子体处理可以显著改善CFRP表面物理化学特性,有利于CFRP与胶黏剂更好的黏结,提高胶接界面剥离强度与韧性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王大伟
李晔
巨乐章
朱安安
关键词 CFRP胶接表面改性氧气等离子体处理表面特性断裂韧度    
Abstract

To improve the mechanical properties of carbon fiber reinforced polymer (CFRP) bonding interface, the surface treatment of CFRP was performed using low-temperature oxygen plasma treatment equipment. The surface physico-chemical properties including surface wettability, surface energy, surface morphology and surface chemical components of CFRP were characterized by contact angle measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) test equipment, as well as the mechanical properties of CFRP bonding interface was tested by double cantilever beam (DCB) test. The results show that the water contact angle of surface decreases from 97° to 29° with the increase of oxygen plasma treatment time from 0 s to 30 s, as well as the surface wettability of CFRP is the best and the percentage of polar components increases significantly. As the increase of treatment time, the surface roughness and the maximum height difference of CFRP decrease significantly, and more nanoscale grooves with valley distribution are formed and thus the surface area of substrate increases. Meanwhile, the content of oxygen-containing polar functional groups including C—O and C=O on the surface are increased obviously, the content of C—C/C—H and Si—C functional groups are decreased, and the surface contaminants are effectively removed or transformed. In comparison with the untreated specimens, the maximum peeling load and mode Ⅰ fracture toughness of CFRP adhesive interface are improved by 1.01 times (62.73 N) and 1.92 times (649.21 J/m2) after oxygen plasma treatment for 20 s, respectively. The study reveals that oxygen plasma treatment can significantly improve the physico-chemical properties of CFRP surface, which is conducive to better bonding between CFRP and adhesive, and improve the peel strength and toughness of the adhesive interface.

Key wordsCFRP    adhesive bonding    surface modification    oxygen plasma treatment    surface prop-erty    fracture toughness
收稿日期: 2021-11-30      出版日期: 2022-10-24
中图分类号:  TB332  
基金资助:国家自然科学基金项目(52071069)
通讯作者: 王大伟     E-mail: dwwang@cauc.edu.cn
作者简介: 王大伟(1975—), 男, 副研究员, 博士, 研究方向为复合材料胶接技术, 联系地址: 天津市东丽区津北路2898号中国民航大学(300300), E-mail: dwwang@cauc.edu.cn
引用本文:   
王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
Dawei WANG, Ye LI, Yuezhang JU, Anan ZHU. Effect of oxygen plasma treatment on surface performance and mechanical properties of bonding interface of CFRP. Journal of Materials Engineering, 2022, 50(10): 118-127.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001153      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/118
Elastic modulus E11/GPa Elastic modulus E12=E13/GPa Shear modulus G12=G13/MPa Shear modulus G23/MPa Poisson’s ratio Density/(kg·m-3)
121 8.6 3450 2800 0.3 1467
Table 1  复合材料主要性能参数
Tensile modulus/MPa Shear modulus/MPa Elongation/%
21.63 17.9 0.33
Table 2  Araldite 2015主要力学性能参数
Fig.1  氧气等离子体处理原理示意图
Test liquid γL/(mJ·m-2) γLD/(mJ·m-2) γLP/(mJ·m-2)
Deionized water 72.8 21.8 51
Diiodomethane 50.8 50.8 0
Table 3  去离子水和二碘甲烷的表面自由能参数
Fig.2  DCB试样尺寸示意图
Fig.3  DCB加载实验
Fig.4  DCB试样的修正梁(MBT)方法示意图
Fig.5  不同时间氧气等离子体处理下CFRP表面水和二碘甲烷接触角
Fig.6  不同时间氧气等离子体处理下CFRP表面自由能
Fig.7  不同时间氧气等离子体处理下CFRP表面SEM图
(a)t=0 s;(b)t=10 s;(c)t=20 s;(d)t=30 s
Fig.8  不同时间氧气等离子体处理下CFRP表面AFM图
(a)t=0 s;(b)t=10 s;(c)t=20 s;(d)t=30 s
Oxygen treatment time/s Ra/nm Maximum height difference/nm
0 81.24 267.42
10 57.26 219.57
20 23.31 147.16
30 9.62 110.16
Table 4  不同时间氧气等离子体处理下CFRP表面粗糙度和最大高度差
Fig.9  不同时间氧气等离子体处理下CFRP表面XPS图谱
Oxygen treatment time/s Atom fraction/% O/C
C O N Si
0 74.37 17.53 3.85 3.73 0.2357
10 67.71 24.21 3.76 3.56 0.3575
20 62.57 30.61 3.12 3.41 0.4892
30 63.71 29.71 2.97 3.35 0.4663
Table 5  不同时间氧气等离子体处理下CFRP表面化学组分及其所占比例
Oxygen treatment time/s Atom fraction of surface group/%
C1s Si2p
C—C/C—H C—O/C—N C=O Si—C Si—O
0 71.89 23.72 4.39 68.04 31.96
20 60.07 33.58 6.35 44.49 55.51
Table 6  氧气等离子体处理前后CFRP试样表面XPS的C1s和Si2p分峰拟合数据
Fig.10  氧气等离子体处理前后CFRP表面的XPS C1s光谱
Fig.11  氧气等离子体处理前后CFRP表面的XPS Si2p光谱
Fig.12  不同时间氧气等离子体处理下DCB试样载荷-位移曲线
Oxygen treatment time/s P/N GⅠC/(J·m-2)
0 31.21 222.67
10 44.06 402.57
20 62.73 649.21
30 51.62 582.15
Table 7  不同时间氧气等离子体处理下DCB试样的最大剥离载荷和Ⅰ型断裂韧度
Fig.13  不同时间氧气离子体处理下DCB试样的Ⅰ型断裂韧度
Fig.14  不同时间氧气等离子体处理下DCB试样的失效形貌
(a)t=0 s;(b)t=10 s;(c)t=20 s;(d)t=30 s
Fig.15  不同时间氧气等离子体处理下DCB试件断口形貌的SEM图
(a)t=20 s;(b)t=30 s
1 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37 (11): 2700- 2706.
doi: 10.13801/j.cnki.fhclxb.20200824.005
1 XING L Y , FENG Z H , BAO J W , et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37 (11): 2700- 2706.
doi: 10.13801/j.cnki.fhclxb.20200824.005
2 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36 (19): 52- 63.
2 BAO J W , JIANG S C , ZHANG D J . Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review, 2018, 36 (19): 52- 63.
3 李威, 郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学, 2011, 16 (3): 201- 212.
doi: 10.3969/j.issn.2095-1531.2011.03.001
3 LI W , GUO Q F . Application of carbon fiber composites to cosmonautic fields[J]. Chinese Optics, 2011, 16 (3): 201- 212.
doi: 10.3969/j.issn.2095-1531.2011.03.001
4 乔海涛, 梁滨, 张军营, 等. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46 (12): 38- 47.
doi: 10.11868/j.issn.1001-4381.2018.000297
4 QIAO H T , LIANG B , ZHANG J Y , et al. Development and application of adhesive materials for advanced composite bonding[J]. Journal of Materials Engineering, 2018, 46 (12): 38- 47.
doi: 10.11868/j.issn.1001-4381.2018.000297
5 周利, 秦志伟, 刘杉, 等. 热塑性树脂基复合材料连接技术的研究进展[J]. 材料导报, 2019, 33 (19): 3177- 3183.
doi: 10.11896/cldb.18090151
5 ZHOU L , QIN Z W , LIU S , et al. Progress on joining technology of thermoplastic resin matrix composites[J]. Materials Reports, 2019, 33 (19): 3177- 3183.
doi: 10.11896/cldb.18090151
6 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29 (11): 61- 64.
6 SUN Z Q , WU A R . Application of advanced composite in aircraft structure[J]. Materials Reports, 2015, 29 (11): 61- 64.
7 李永兵, 马运五, 楼铭, 等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56 (6): 125- 146.
7 LI Y B , MA Y W , LOU M , et al. Advances in spot joining technologies of light weight thin-walled structures[J]. Journal of Mechanical Engineering, 2020, 56 (6): 125- 146.
8 李智, 游敏, 丰平. 胶接接头界面理论及其表面处理技术研究进展[J]. 材料导报, 2006, 20 (10): 48- 51.
doi: 10.3321/j.issn:1005-023X.2006.10.013
8 LI Z , YOU M , FENG P . A review of research on the interface of bonded joints and its theories[J]. Materials Reports, 2006, 20 (10): 48- 51.
doi: 10.3321/j.issn:1005-023X.2006.10.013
9 QIN G , NA J , MU W , et al. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive CFRP and adhesively bonded CFRP-aluminum alloy joints[J]. Composites: Part B, 2018, 154, 43- 55.
doi: 10.1016/j.compositesb.2018.07.059
10 MARTINEZ L V H , VAEGAS I S Y , CRUZ G C E , et al. Studies on the influence of surface treatment type in the effectiveness of structural adhesive bonding for carbon fiber reinforced composites[J]. Journal of Manufacturing Processes, 2019, 39, 160- 166.
doi: 10.1016/j.jmapro.2019.02.014
11 DE L P S , GIGLIA V , SANGERMANO M , et al. Etching of carbon fiber-reinforced plastics to increase their joint strength[J]. Journal of Materials Engineering and Performance, 2020, 29 (1): 242- 250.
doi: 10.1007/s11665-020-04576-5
12 SEE T L , LIU Z , CHEETHAM S , et al. Laser abrading of carbon fibre reinforced composite for improving paint adhesion[J]. Applied Physics A, 2014, 117 (3): 1045- 1054.
doi: 10.1007/s00339-014-8527-8
13 SUN C , MIN J , LIN J , et al. Effect of atmospheric pressure plasma treatment on adhesive bonding of carbon fiber reinforced polymer[J]. Polymers, 2019, 11 (1): 139.
doi: 10.3390/polym11010139
14 ENCINAS N , OAKLEY B R , BELCHER M A , et al. Surface modification of aircraft used composites for adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2014, 50, 157- 163.
doi: 10.1016/j.ijadhadh.2014.01.004
15 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展[J]. 物理学报, 2021, 70 (9): 22- 38.
15 ZHANG H B , CHEN Q . Recent progress of non-thermal plasma material surface treatment and functionalization[J]. Acta Physica Sinica, 2021, 70 (9): 22- 38.
16 翟全胜, 苗春卉, 崔海超, 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能[J]. 复合材料学报, 2021, 38 (7): 2162- 2171.
doi: 10.13801/j.cnki.fhclxb.20201016.002
16 ZHAI Q S , MIAO C H , CUI H C , et al. Bonding performance of domestic T800/high toughness epoxy resin composites based on surface modification[J]. Acta Materiae Compositae Sinica, 2021, 38 (7): 2162- 2171.
doi: 10.13801/j.cnki.fhclxb.20201016.002
17 ZIA A W , WANG Y Q , LEE S . Effect of physical and chemical plasma etching on surface wettability of carbon fiber-reinforced polymer composites for bone plate applications[J]. Advances in Polymer Technology, 2015, 34 (1): 21480.
18 KIM J , MAUCHAUFFE R , KIM D , et al. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement[J]. Surface and Coatings Technology, 2020, 393, 125841.
doi: 10.1016/j.surfcoat.2020.125841
19 PIZZORNI M , LERTORA E , GAMBARO C , et al. Low-pressure plasma treatment of CFRP substrates for epoxy-adhesive bonding: an investigation of the effect of various process gases[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102 (9): 3021- 3035.
20 THAN E , PODLESAK H , LEONHARDT G . On the relations between atomic interface parameters and the wettability and stability in metal-ceramic systems[J]. Vacuum, 1990, 41 (7): 1750- 1752.
21 蒋华义, 张亦翔, 梁爱国, 等. 材料表面润湿性的影响因素及预测模型[J]. 表面技术, 2018, 47 (1): 60- 65.
21 JIANG H Y , ZHANG Y X , LIANG A G , et al. Influencing factors and prediction model of material surface wettability[J]. Surface Technology, 2018, 47 (1): 60- 65.
22 李楠楠, 李国禄, 王海斗, 等. 表面自由能的计算方法及其对材料表面性能影响机制的研究现状[J]. 材料导报, 2015, 29 (11): 30- 35.
22 LI N N , LI G L , WANG H D , et al. Research progress of surface free energy's computing methods and the influence on the properties of material surface[J]. Materials Reports, 2015, 29 (11): 30- 35.
23 GAO Z , PENG S , SUN J , et al. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films[J]. Applied Surface Science, 2009, 255 (17): 7683- 7688.
doi: 10.1016/j.apsusc.2009.04.137
24 刘哲, 陈博涵, 陈平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响[J]. 材料研究学报, 2020, 34 (2): 109- 117.
24 LIU Z , CHEN B H , CHEN P . Treatment of oxygen dielectric barrier discharge plasma on PBO fiber surface and influence on its BMI composites[J]. Chinese Journal of Materials Research, 2020, 34 (2): 109- 117.
25 MAHAPATRA R , CHAKRABORTY A K , HORSFALL A B , et al. Energy-band alignment of HfO2/SiO2/SiC gate dielectric stack[J]. Applied Physics Letters, 2008, 92 (4): 42904.
doi: 10.1063/1.2839314
26 LIN H , LI H , WANG T , et al. Influence of temperature and oxygen on the growth of large-scale SiC nanowires[J]. CrystEngComm, 2019, 21 (11): 1801- 1808.
doi: 10.1039/C8CE01844H
27 MIKI N , SPEARING S M . Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers[J]. Journal of Applied Physics, 2003, 94 (10): 6800- 6806.
doi: 10.1063/1.1621086
28 CHICHE A , PAREIGE P , CRETON C . Role of surface roughness in controlling the adhesion of a soft adhesive on a hard surface[J]. Comptes Rendus de Ⅰ/Académie des Sciences-Series, 2000, 1 (9): 1197- 1204.
29 PERSSON B N J , ALBOHR O , TARTAGLINO U , et al. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[J]. Journal of Physics, 2004, 17 (1): 34014.
[1] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[2] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[3] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[4] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[5] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[6] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[7] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[8] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[9] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[10] 朱国伟, 李宏岩, 许云志, 张晓军. PNF增韧层对CFRP复合材料分层影响的数值分析[J]. 材料工程, 2019, 47(10): 148-153.
[11] 杨唐俊, 袁荞龙, 黄发荣. 石英纤维增强含硅芳炔树脂复合材料的界面增强[J]. 材料工程, 2018, 46(8): 148-155.
[12] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[13] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
[14] 徐荣章, 凌晓涛, 贾利勇. 成型工艺对复合材料帽型加筋板轴压特性的影响[J]. 材料工程, 2018, 46(4): 152-157.
[15] 乔海涛, 梁滨, 张军营, 刘清方, 陆松, 赵升龙, 张瑞秀. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12): 38-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn