Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 1-15    DOI: 10.11868/j.issn.1001-4381.2021.001213
  镁基复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
镁基复合材料界面调控研究进展
熊京鹏, 刘勇()
南昌大学 先进制造学院 江西省轻质高强结构 材料重点实验室, 南昌 330031
Research progress in interfacial regulation of magnesium matrix composites
Jingpeng XIONG, Yong LIU()
Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, Advanced Manufacturing School, Nanchang University, Nanchang 330031, China
全文: PDF(6344 KB)   HTML ( 36 )  
输出: BibTeX | EndNote (RIS)      
摘要 

界面是影响镁基复合材料综合性能的关键因素, 如何进行界面调控一直是镁基复合材料的研究热点。本文围绕镁基复合材料三种界面结构类型(共格界面、半共格界面和非共格界面), 针对影响界面性能的两个关键问题(界面润湿性和界面反应), 综述了界面优化方案的研究进展, 提出了实现良好界面结合的界面结构设计与调控准则: 良好润湿性与轻微界面反应。针对镁基复合材料的界面性能提升, 可以考虑添加稀土元素, 起到净化界面、改善润湿性的作用; 根据工程需要选择基体和增强体, 得到某方面性能优异的复合材料; 开发新的增强体表面涂层, 充分提高界面结合能力; 通过第一性原理等计算模拟方法, 深入探究界面结构与界面性能之间的关系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊京鹏
刘勇
关键词 镁基复合材料界面结构界面结合强度界面结合优化准则    
Abstract

Interface is a key factor affecting the comprehensive performance of magnesium matrix composites, and how to carry out interfacial modulation has been a hot research topic in magnesium matrix composites. Focusing on three types of interface structures of magnesium matrix composites (coherent, semi-coherent and incoherent) and two key issues (interfacial wettability and interfacial reaction) affecting the interface properties, the research progress of interface optimization schemes was reviewed in this paper and the guidelines for the design and regulation of interfacial structures to achieve good interfacial bonding were proposed: good wettability and slight interfacial reaction. In view of the improvement of interface properties of magnesium matrix composites, the addition of rare earth elements can be considered in the future to purify the interface and improve wettability. The matrix and reinforcement are selected according to engineering needs to obtain composite materials with excellent performance in certain aspects. New reinforcement surface coatings will be developed to fully enhance the capabilities of interfacial bonding. First-principles and other computational simulation methods will be used to deeply explore the relationship between interface structure and interface performance.

Key wordsmagnesium matrix composites    interface structure    interface bonding strength    interface combination optimization guideline
收稿日期: 2021-12-20      出版日期: 2023-01-16
中图分类号:  TB331  
基金资助:国家自然科学基金项目(52061028);国家重点研发计划(2021YFB3501001)
通讯作者: 刘勇     E-mail: liuyong@ncu.edu.cn
作者简介: 刘勇(1980—),男,教授,博导,研究方向为高性能镁合金,联系地址:南昌大学前湖校区先进制造学院(330031),E-mail: liuyong@ncu.edu.cn
引用本文:   
熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
Jingpeng XIONG, Yong LIU. Research progress in interfacial regulation of magnesium matrix composites. Journal of Materials Engineering, 2023, 51(1): 1-15.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001213      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/1
Fig.1  镁基体与增强体的界面类型[33]
(a)非共格;(b)半共格;(c)共格
Fig.2  镁基复合材料界面形成过程示意图
(a)润湿过程;(b)界面反应;(c)界面组织
Reinforcement Density/(g·cm-3) Melting point/℃ Yield strength/MPa Elastic modulus/GPa Contact angle/(°)(Temperature/K) Reference
SiC 3.21 2700 400-500 480 76-83(973-1173) [52]
B4C 2.52 2450 300-500 360-460 87-95(973-1173) [53]
TiC 4.92 3300 500 320 60-74(973-1173) [53]
Al2O3 3.98 2050 221 410 < 90 [54]
SiO2 2.66 1650 100 73 < 90 [55]
TiB2 4.50 2980 129 370 >90 [56]
Si3N4 3.2-3.35 2100 980 330 >90 [57]
AlN 3.25 2300 2069 350 >90 [58]
BN 2.25 3000 600-900 90 >90 [59]
CNTs 2.10 3652-3697 >1000 155 [60]
GNPs 3850 1000 >90 [61]
Cf 1.75 3500 200-400 120 [62]
Table 1  增强体的力学性能以及与镁基体之间的接触角
Fig.3  搅拌铸造法制备石墨烯增强镁基复合材料过程示意图[47]
(a)石墨烯预处理分散;(b)搅拌铸造工艺
Reinforcement Interfacial reaction Description Reference
Ti No reaction Reducing the surface tension of liquid magnesium alloy [98-99]
C 3C+4Al→Al4C3
2C+2Al+Mg→Al2MgC2
Resulting in brittle phase, material properties are unfavorable [100-101]
Ni 2Mg+Ni→Mg2Ni
3Al+2 Ni→Al3Ni2
Improving interface bonding strength, but Ni reduces the corrosion resistance [41, 92]
Cu 2Mg+Cu→Mg2Cu Mg2Cu facilitates interface bonding [102]
Al2O3 3Mg+Al2O3→2Al+3MgO Generating a large number of spinels will change the alloy composition [24]
B4C(B2O3) 4Mg(l)+B2O3(l)→MgB2(s)+3MgO(s) The product facilitates wetting to facilitate interfacial bonding [103]
Al2SiO5 SiO2+4Mg→2MgO+Mg2Si
3(Al2O3·2SiO2)→3Al2O3·2SiO2+4SiO2
5Mg+2SiO2+2Al→MgAl2O4+2Mg2Si
MgO and MgAl2O4 can improve the interfacial bonding strength, but the brittle phase Mg2Si is not conducive to the improvement of composite properties [104]
Al18B4O33 Al18B4O33+33Mg→33MgO+18Al+4B MgO can prevent subsequent interfacial reactions and facilitate interface bonding [105]
Mg2B2O5 2Mg+O2→2MgO
MgO(s)+2B2O3(l)→MgO·2B2O3
2MgO(s)+B2O3→2MgO·B2O3
The reaction destroys the structure of the reinforcement [27, 106]
Table 2  增强体与镁的界面反应
Material Crystal face index Interplanar spacing/nm Mismatch/% Reference
d1 d2 δ1 δ2
α-Mg (01${\rm{\bar 1}}$1) 0.3209 0.3176 [41]
MgO (1${\rm{\bar 1}}$01) 0.2994 0.2970 6.70 6.50 [110]
La2O3 (10${\rm{\bar 1}}$0) 0.3400 0.3400 5.95 7.05 [111]
Sc2O3 (22${\rm{\bar 4}}$2) 0.3060 4.60 [112]
Li2O (10${\rm{\bar 1}}$0) 0.3360 4.70 [112]
Ce2O3 (22${\rm{\bar 4}}$2) 0.2830 11.81 [112]
Table 3  氧化物与α-Mg的界面特征
Fig.4  不同增强体在镁基体中的润湿性和界面反应(a)及部分复合材料的强塑性关系(b)
1 CHEN L Y , XU J Q , CHOI H S , et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528 (7583): 539- 543.
doi: 10.1038/nature16445
2 PRADO M T , CEPEDA-JIMENEZ C M . Materials science: strength ceiling smashed for light metals[J]. Nature, 2015, 528 (7583): 486- 487.
doi: 10.1038/528486a
3 TRANG T T T , ZHANG J H , KIM J H , et al. Designing a magnesium alloy with high strength and high formability[J]. Nat Commun, 2018, 9 (1): 2522.
doi: 10.1038/s41467-018-04981-4
4 SCHALLER R . Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds, 2003, 355 (1/2): 131- 135.
5 WU Z X , AHMAD R , YIN B , et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys[J]. Science, 2018, 359 (6374): 447- 452.
doi: 10.1126/science.aap8716
6 张从阳, 李志锐, 方东, 等. SiCP/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48 (4): 108- 115.
6 ZHANG C Y , LI Z R , FANG D , et al. Tensile behavior and plastic deformation mechanism of SiCP/AZ91D magnesium matrix nanocomposites at room temperature[J]. Journal of Materials Engineering, 2020, 48 (4): 108- 115.
7 WONSIEWICZ B. Plasticity of magnesium crystals[R]. Cambridge: Massachusetts Institute of Technology, 1967.
8 POLLOCK T M . Weight loss with magnesium alloys[J]. Sciense, 2010, 328 (5981): 986- 987.
doi: 10.1126/science.1182848
9 CHANG G , SUN F , DUAN J , et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond[J]. Acta Materialia, 2018, 160, 235- 246.
doi: 10.1016/j.actamat.2018.09.004
10 RICCARDO C , ALBERTO F , GIULIO T , et al. Microstructural and mechanical properties of Al-based composites reinforced with in-situ and ex-situ Al2O3 nanoparticles[J]. Journal of Engineering, 2016, 18 (4): 550- 558.
11 ZHANG X , SONG F , WEI Z , et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Materials Science and Engineering: A, 2017, 705, 153- 159.
doi: 10.1016/j.msea.2017.08.079
12 袁秋红, 曾效舒, 刘勇, 等. 碳纳米管增强镁基复合材料弹性模量的研究进展[J]. 中国有色金属学报, 2015, 25 (1): 86- 97.
12 YUAN Q H , ZENG X S , LIU Y , et al. Research progress of elastic modulus of magnesium matrix composite reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (1): 86- 97.
13 何阳, 袁秋红, 罗岚, 等. 镁基复合材料研究进展及新思路[J]. 航空材料学报, 2018, 38 (4): 26- 36.
13 HE Y , YUAN Q H , LUO L , et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials, 2018, 38 (4): 26- 36.
14 ABBAS A , HUANG S J , BALLÓKOVÁ B , et al. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process[J]. Tribology International, 2020, 142, 105982.
doi: 10.1016/j.triboint.2019.105982
15 HUANG S J , ABBAS A , BALLÓKOVÁ B . Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy[J]. Journal of Materials Research and Technology, 2019, 8 (5): 4273- 4286.
doi: 10.1016/j.jmrt.2019.07.037
16 ABAZARI S , SHAMSIPUR A , BAKHSHESHI-RAD H R , et al. Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review[J]. Materials (Basel), 2020, 13 (19): 4421.
doi: 10.3390/ma13194421
17 YE H Z , LIU X Y . Review of recent studies in magnesium matrix composites[J]. Journal of Materials Science, 2004, 39 (20): 6153- 6171.
doi: 10.1023/B:JMSC.0000043583.47148.31
18 ZHOU J , YUAN M , LI Z , et al. A great improvement of tensile properties of Cf/AZ91D composite through grafting CNTs onto the surface of the carbon fibers[J]. Materials Science and Engineering: A, 2019, 762, 138061.
doi: 10.1016/j.msea.2019.138061
19 LI H , DAI X , ZHAO L , et al. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process[J]. Journal of Alloys and Compounds, 2019, 785, 146- 155.
doi: 10.1016/j.jallcom.2019.01.144
20 VAHEDI F , ZAREI-HANZAKI A , SALANDARI-RABORI A , et al. Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles[J]. Journal of Alloys and Compounds, 2020, 815, 152231.
doi: 10.1016/j.jallcom.2019.152231
21 LIM C Y H , LIM S C , GUPTA M . Wear behaviour of SiCp-reinforced magnesium matrix composites[J]. Wear, 2003, 255 (1/6): 629- 637.
22 YAO Y , CHEN L . Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique[J]. Journal of Materials Science & Technology, 2014, 30 (7): 661- 665.
23 CAO W , ZHANG C , FAN T , et al. In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites[J]. Materials Science and Engineering: A, 2008, 496 (1/2): 242- 246.
24 MOUNIB M , PAVESE M , BADINI C , et al. Reactivity and microstructure of Al2O3-reinforced magnesium-matrix composites[J]. Advances in Materials Science and Engineering, 2014, 2014, 1- 6.
25 BHINGOLE P P , CHAUDHARI G P , NATH S K . Processing, microstructure and properties of ultrasonically processed in situ MgO-Al2O3-MgAl2O4 dispersed magnesium alloy composites[J]. Composites: Part A, 2014, 66, 209- 217.
doi: 10.1016/j.compositesa.2014.08.001
26 ZHENG M , WU K , YAO C , et al. Squeeze cast Al18B4O33 whisker-reinforced magnesium matrix composite[J]. Journal of Materials Science Letters, 2002, 21 (7): 533- 535.
doi: 10.1023/A:1015496619283
27 CHEN S H , JIN P P , SCHUMACHER G , et al. Microstructure and interface characterization of a cast Mg2B2O5 whisker reinforced AZ91D magnesium alloy composite[J]. Composites Science and Technology, 2010, 70 (1): 123- 129.
doi: 10.1016/j.compscitech.2009.09.015
28 WANG H Y , JIANG Q C , ZHAO Y Q , et al. Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J]. Materials Science and Engineering: A, 2004, 372 (1/2): 109- 114.
29 KATSAROU L , MOUNIB M , LEFEBVRE W , et al. Microstructure, mechanical properties and creep of magnesium alloy Elektron 21 reinforced with AlN nanoparticles by ultrasound-assisted stirring[J]. Materials Science and Engineering: A, 2016, 659, 84- 92.
doi: 10.1016/j.msea.2016.02.042
30 范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55 (1): 16- 32.
30 FAN T X , LIU Y , YANG K M , et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites[J]. Acta Metallurgica Sinica, 2018, 55 (1): 16- 32.
31 王忠海, 陈善华, 康鸿越. 镁基复合材料强化机制[J]. 轻金属, 2007, (11): 37- 40.
31 WANG Z H , CHEN S H , KANG H Y . The strengthening mechanisms of magnesium-based composites[J]. Light Metals, 2007, (11): 37- 40.
32 冯艳, 陈超, 彭超群, 等. 镁基复合材料的研究进展[J]. 中国有色金属学报, 2017, 27 (12): 2385- 2407.
32 FENG Y , CHEN C , PENG C Q , et al. Research progress on magnesium matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (12): 2385- 2407.
33 LU K . Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1 (5): 16019.
doi: 10.1038/natrevmats.2016.19
34 NIE K B , WANG X J , HU X S , et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration[J]. Materials Science and Engineering: A, 2011, 528 (15): 5278- 5282.
doi: 10.1016/j.msea.2011.03.061
35 LAN J , YANG Y , LI X . Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Engineering: A, 2004, 386 (1/2): 284- 290.
36 YANG X , WANG F , FAN Z . Crystallographic study of nucleation in SiC particulate reinforced magnesium matrix composite[J]. Journal of Alloys and Compounds, 2017, 706, 430- 437.
doi: 10.1016/j.jallcom.2017.02.246
37 LUO A . Heterogeneous nucleation and grain refinement in cast Mg(AZ91)/SiC metal matrix composites[J]. Canadian Metallurgical Quarterly, 1996, 35 (4): 375- 383.
doi: 10.1179/cmq.1996.35.4.375
38 WANG Y , FAN Z , ZHOU X , et al. Characterisation of magnesium oxide and its interface with α-Mg in Mg-Al-based alloys[J]. Philosophical Magazine Letters, 2011, 91 (8): 516- 529.
doi: 10.1080/09500839.2011.591744
39 YUAN Q H , ZENG X S , LIU Y , et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon, 2016, 96, 843- 855.
doi: 10.1016/j.carbon.2015.10.018
40 袁秋红, 周国华, 廖琳, 等. 不同纳米碳材料增强镁基复合材料的显微组织与力学性能[J]. 中国有色金属学报, 2021, 31 (1): 30- 41.
40 YUAN Q H , ZHOU G H , LIAO L , et al. Microstructures and mechanical properties of Mg-based composites reinforced with different nano-carbon materials[J]. Transactions of Nonferrous Metals Society of China, 2021, 31 (1): 30- 41.
41 YUAN Q H , ZHOU G H , LIAO L , et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127, 177- 186.
doi: 10.1016/j.carbon.2017.10.090
42 HAN G , DU W , YE X , et al. Compelling mechanical properties of carbon nanotubes reinforced pure magnesium composite by effective interface bonding of Mg2Ni[J]. Journal of Alloys and Compounds, 2017, 727, 963- 969.
doi: 10.1016/j.jallcom.2017.08.133
43 IIJIMA S . Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56- 58.
doi: 10.1038/354056a0
44 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
45 UOZUMI H , KOBAYASHI K , NAKANISHI K , et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting[J]. Materials Science and Engineering: A, 2008, 495 (1/2): 282- 287.
46 WU F , ZHU J , CHEN Y , et al. The effects of processing on the microstructures and properties of Gr/Mg composites[J]. Materials Science and Engineering: A, 2000, 277 (1/2): 143- 147.
47 王晓军, 向烨阳, 胡小石, 等. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55 (1): 73- 86.
47 WANG X J , XIANG Y Y , HU X S , et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials[J]. Acta Metallurgica Sinica, 2019, 55 (1): 73- 86.
48 王韬, 黄晓锋, 梁艳, 等. 颗粒增强镁基复合材料的增强复合新思路[J]. 热加工工艺, 2008, 37 (20): 98- 103.
doi: 10.3969/j.issn.1001-3814.2008.20.033
48 WANG T , HUANG X F , LIANG Y , et al. New ideas of compound reinforcement of particulate reinforced magnesium matrix composite[J]. Hot Working Technology, 2008, 37 (20): 98- 103.
doi: 10.3969/j.issn.1001-3814.2008.20.033
49 张乾, 齐乐华, 李贺军. 碳纳米管增强镁基复合材料制备及界面研究进展[J]. 材料科学与工艺, 2020, 28 (3): 76- 88.
49 ZHANG Q , QI L H , LI H J . Research progress on manufacture processes and interface of CNTs/Mg composites: a review[J]. Materials Science and Technology, 2020, 28 (3): 76- 88.
50 刘贯军, 李文芳, 杜军. 铝、镁基复合材料的润湿性探究[J]. 铸造, 2006, 55 (9): 911- 915.
doi: 10.3321/j.issn:1001-4977.2006.09.010
50 LIU G J , LI W F , DU J . Investigation on wettability of Al-Mg metal matrix composites[J]. Foundry, 2006, 55 (9): 911- 915.
doi: 10.3321/j.issn:1001-4977.2006.09.010
51 GOOD R J . A thermodynamic derivation of Wenzel's modification of Young's equation for contact angles; together with a theory of hysteresis1[J]. Journal of the American Chemical Society, 2002, 74 (20): 5041- 5042.
52 ZHANG D , SHEN P , SHI L , et al. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates[J]. Applied Surface Science, 2010, 256 (23): 7043- 7047.
doi: 10.1016/j.apsusc.2010.05.022
53 ZHANG D , SHEN P , SHI L , et al. Wetting of B4C, TiC and graphite substrates by molten Mg[J]. Materials Chemistry and Physics, 2011, 130 (1/2): 665- 671.
54 ASAVAVISITHCHAI S , KENNEDY A . The effect of Mg addition on the stability of Al-Al2O3 foams made by a powder metallurgy route[J]. Scripta Materialia, 2006, 54 (7): 1331- 1334.
doi: 10.1016/j.scriptamat.2005.12.015
55 BAHRAMI A , PECH-CANUL M I , GUTIÉRREZ C A , et al. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys[J]. Applied Surface Science, 2015, 357, 1104- 1113.
doi: 10.1016/j.apsusc.2015.09.137
56 WANG Y , WANG H Y , XIU K , et al. Fabrication of TiB2 particulate reinforced magnesium matrix composites by two-step processing method[J]. Materials Letters, 2006, 60 (12): 1533- 1537.
doi: 10.1016/j.matlet.2005.11.065
57 DE LA PEÑA J L , PECH-CANUL M I . Reactive wetting and spreading of Al-Si-Mg alloys on Si3N4/Si substrates[J]. Materials Science and Engineering: A, 2008, 491 (1/2): 461- 469.
58 BEDOLLA E , LEMUS-RUIZ J , CONTRERAS A . Synthesis and characterization of Mg-AZ91/AlN composites[J]. Materials & Design, 2012, 38, 91- 98.
59 KVASHNIN D G , KRASHENINNIKOV A V , SHTANSKY D , et al. Nanostructured BN-Mg composites: features of interface bonding and mechanical properties[J]. Phys Chem Chem Phys, 2016, 18 (2): 965- 969.
doi: 10.1039/C5CP06289F
60 YANG J , ZHANG Z , MEN X , et al. Thermo-responsive surface wettability on a pristine carbon nanotube film[J]. Carbon, 2011, 49 (1): 19- 23.
doi: 10.1016/j.carbon.2010.08.033
61 RASHAD M , PAN F , HU H , et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J]. Materials Science and Engineering: A, 2015, 630, 36- 44.
doi: 10.1016/j.msea.2015.02.002
62 PEI Z L , LI K , GONG J , et al. Micro-structural and tensile strength analyses on the magnesium matrix composites reinforced with coated carbon fiber[J]. Journal of Materials Science, 2009, 44 (15): 4124- 4131.
doi: 10.1007/s10853-009-3604-7
63 陈建, 顾明元, 潘复生. 活性金属/陶瓷粘着功[J]. 复合材料学报, 2003, 20 (3): 85- 88.
63 CHEN J , GU M Y , PAN F S . Work of adhesion for reactive metal/ceramic systems[J]. Acta Materiae Compositae Sinica, 2003, 20 (3): 85- 88.
64 房鑫, 范同祥, 张荻. 金属/陶瓷粘着功的热力学预测模型[J]. 材料导报, 2013, 27 (11): 130- 133.
64 FANG X , FAN T X , ZHANG D . Thermodynamic prediction models for work of adhesion in metal/ceramic systems[J]. Materials Reports, 2013, 27 (11): 130- 133.
65 李新林, 王慧远, 姜启川. 颗粒增强镁基复合材料的研究现状及发展趋势[J]. 材料科学与工艺, 2001, 9 (2): 219- 224.
65 LI X L , WANG H Y , JIANG Q C . The present status and developing trends of particulate reinforced magnesium matrix composites[J]. Materials Science and Technology, 2001, 9 (2): 219- 224.
66 PEI R , CHEN G , ZHANG S , et al. Effects of Gd element and SiC particles on microstructures of Cf/Mg composites[J]. Micron, 2014, 64, 1- 5.
doi: 10.1016/j.micron.2014.03.007
67 李国栋, 栗卓新, 古金茂, 等. 超声作用下Mg-Zn-Al钎料的润湿与铺展[J]. 材料工程, 2016, 44 (7): 43- 48.
67 LI G D , LI Z X , GU J M , et al. Wetting and spreading behavior of Mg-Zn-Al solder under ultrasonic vibration[J]. Journal of Materials Engineering, 2016, 44 (7): 43- 48.
68 LI C D , WANG X J , LIU W Q , et al. Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite[J]. Materials & Design, 2014, 58, 204- 208.
69 HASHIM J , LOONEY L , HASHMI M S J . The enhancement of wettability of SiC particles in cast aluminium matrix composites[J]. Journal of Materials Processing Technology, 2001, 119 (1/3): 329- 335.
70 WU G H , SONG M H , XIU Z Y , et al. Microstructure and properties of M40 carbon fibre reinforced Mg-Re-Zr alloy composites[J]. Journal of Materials Science & Technology, 2009, 25 (3): 423- 426.
71 PEETERBROECK S , LAOUTID F , SWOBODA B , et al. How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites?[J]. Macromolecular Rapid Communications, 2007, 28 (3): 260- 264.
72 CHU K , WANG J , LIU Y P , et al. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites[J]. Carbon, 2018, 140, 112- 123.
73 DU X , DU W , WANG Z , et al. Defects in graphene nanoplatelets and their interface behavior to reinforce magnesium alloys[J]. Applied Surface Science, 2019, 484, 414- 423.
74 于志强, 武高辉, 孙东立. 铝基复合材料增强体涂层与界面[J]. 材料工程, 2001, (10): 13- 17.
74 YU Z Q , WU G H , SUN D L . Reinforcement coatings and interfaces in aluminium metal matrix composites[J]. Journal of Materials Engineering, 2001, (10): 13- 17.
75 NAI M H , WEI J , GUPTA M . Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Materials & Design, 2014, 60, 490- 495.
76 鲁鹏, 夏存娟, 王浩伟, 等. Zn涂层碳纤维增强镁基复合材料的研究[J]. 热加工工艺, 2009, 38 (10): 122- 127.
76 LU P , XIA C J , WANG H W , et al. Study on Zinc-coated Cr/Mg Composite[J]. Hot Working Technology, 2009, 38 (10): 122- 127.
77 WANG H , ZHANG Z H , HU Z Y , et al. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes[J]. Sci Rep, 2016, 6, 26258.
78 JAGANNATHAM M , SANKARAN S , HARIDOSS P . Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering: A, 2015, 638, 197- 207.
79 FENG Y , REN J , DONG C , et al. Microstructures and properties of Ti-coated SiCp reinforced Al-Si alloy composites[J]. JOM, 2016, 69 (4): 756- 762.
80 郝艳霞, 杨绪杰, 陆路德, 等. Al2O3涂层碳纤维环氧基复合材料的性能研究[J]. 材料科学与工程学报, 2004, 22 (2): 164- 167.
80 HAO Y X , YANG X J , LU L D , et al. Properties of YSZ coated carbon fiber/epoxy resin composite[J]. Journal of Materials Science and Engineering, 2004, 22 (2): 164- 167.
81 ARDILA-RODRíGUEZ L A , MENEZES B R C , PEREIRA L A , et al. Titanium dioxide protection against Al4C3 formation during fabrication of aluminum-TiO2 coated MWCNT composite[J]. Journal of Alloys and Compounds, 2019, 780, 772- 782.
82 WANG M , ZHAO Y , WANG L D , et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process[J]. Carbon, 2018, 139, 954- 963.
83 华文君, 陈大明, 赵家培. 阴极溅射SiC涂层碳纤维结构与特性研究[J]. 复合材料学报, 1999, 16 (3): 74- 78.
83 HUA W J , CHEN D M , ZHAO J P . Study on structure and characteristics of cathode sputtering SiC coating carbon fiber[J]. Acta Materiae Compositae Sinica, 1999, 16 (3): 74- 78.
84 李石保, 李银奎, 龙永福, 等. 碳化硼涂覆的碳纤维的抗热氧化性研究[J]. 国防科技大学学报, 1998, 20 (6): 118- 121.
84 LI S B , LI Y K , LONG Y F , et al. Anti-thermal oxidation resistance of carbon fibers[J]. Journal of National University of Defense Technology, 1998, 20 (6): 118- 121.
85 BOUIX J , BERTHET M , BOSSELET F , et al. Physico-chemistry of interfaces in inorganic-matrix composites[J]. Composites Science and Technology, 2001, 61 (3): 355- 362.
86 REISCHER F , PIPPEL E , WOLTERSDORF J , et al. Carbon fibre-reinforced magnesium: improvement of bending strength by nanodesign of boron nitride interlayers[J]. Materials Chemistry and Physics, 2007, 104 (1): 83- 87.
87 KÖRNER C , SCHÄFF W , OTTMVLLER M , et al. Carbon long fiber reinforced magnesium alloys[J]. Advanced Engineering Materials, 2000, 2 (6): 327- 337.
88 PARK Y , CHO K , PARK I , et al. Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes[J]. Procedia Engineering, 2011, 10, 1446- 1450.
89 梅志, 崔昆, 吴人洁, 等. 颗粒增强体的表面处理方法[J]. 材料开发与应用, 1997, (4): 32- 34.
89 MEI Z , CUI K , WU R J , et al. Surface treatment of particulate reinforcements[J]. Development and Application of Materials, 1997, (4): 32- 34.
90 AMATEAU M F . Progress in the development of graphite-aluminum composites using liquid infiltration technology[J]. Journal of Composite Materials, 1976, 10 (4): 279- 296.
91 李四年, 沈金龙, 余天庆, 等. 不同涂层碳纳米管对增强镁基复合材料力学性能的影响[J]. 铸造技术, 2004, 25 (8): 590- 595.
91 LI S N , SHEN J L , YU T Q , et al. Effect of different plating carbon nanotubes on mechanical properties of magnesium matrix composite[J]. Foundry Technol, 2004, 25 (8): 590- 595.
92 YUAN Q H , ZENG X , WANG Y , et al. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs[J]. Journal of Materials Science & Technology, 2017, 33 (5): 452- 460.
93 李是捷, 周海涛, 应韬, 等. 表面涂覆对碳纤维镁基复合材料组织与性能的影响[J]. 铸造技术, 2021, 42 (2): 69- 84.
93 LI S J , ZHOU H T , YING T , et al. Effect of surface coating on microstructure and properties of carbon fiber magnesium matrix composites[J]. Foundry Technol, 2021, 42 (2): 69- 84.
94 POPOVSKA N , GERHARD H , WURM D , et al. Chemical vapor deposition of titanium nitride on carbon fibres as a protective layer in metal matrix composites[J]. Materials & Design, 1997, 18 (4/6): 239- 242.
95 XIANG S , WANG X , GUPTA M , et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Scientific Reports, 2016, 6 (1): 38824.
96 周海涛, 汪彦博, 肖旅, 等. 含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势[J]. 材料研究学报, 2020, 34 (11): 801- 810.
96 ZHOU H T , WANG Y B , XIAO L , et al. Research status and developing trends of preparation and interface control of magnesium matrix composites with carbon-containing reinforcements[J]. Chinese Journal of Materials Research, 2020, 34 (11): 801- 810.
97 RAWAL S P . Interface structure in graphite-fiber-reinforced metal-matrix composites[J]. Surface and Interface Analysis, 2001, 31 (7): 692- 700.
98 PÉREZ P , GARCÉS G , ADEVA P . Mechanical properties of a Mg-10 (vol.%)Ti composite[J]. Composites Science and Technology, 2004, 64 (1): 145- 151.
99 HASSAN S F , GUPTA M . Development of ductile magnesium composite materials using titanium as reinforcement[J]. Journal of Alloys and Compounds, 2002, 345 (1/2): 246- 251.
100 LANDRY K , KALOGEROPOULOU S , EUSTATHOPOULOS N . Wettability of carbon by aluminum and aluminum alloys[J]. Materials Science and Engineering: A, 1998, 254 (1/2): 99- 111.
101 FUKUDA H , KONDOH K , UMEDA J , et al. Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6wt.% Al alloy matrix composites reinforced with carbon nanotubes[J]. Composites Science and Technology, 2011, 71 (5): 705- 709.
102 HASSAN S F , GUPTA M . Development of a novel magnesium-copper based composite with improved mechanical properties[J]. Materials Research Bulletin, 2002, 37 (2): 377- 389.
103 金头男, 聂祚仁, 李斗星. 浸渍-挤压(SiCw+B4Cp)/Mg(AZ91)复合材料的微观组织[J]. 中国有色金属学报, 2002, 12 (1): 110- 114.
103 JIN T N , NIE Z R , LI D X . Microstructure of (SiCw + B4Cp)/AZ91 magnesium alloy composite[J]. Transactions of Nonferrous Metals Society of China, 2002, 12 (1): 110- 114.
104 刘贯军, 李文芳, 彭继华, 等. 硅酸铝短纤维增强镁基复合材料的界面反应及其热力学分析[J]. 复合材料学报, 2007, 24 (2): 7- 12.
104 LIU G J , LI W F , PENG J H , et al. Interface reaction and thermodynamic analysis on the magnesium alloy matrix composite reinforced with alumina silicate short fibers[J]. Acta Materiae Compositae Sinica, 2007, 24 (2): 7- 12.
105 ZHENG M Y , WU K , LIANG M , et al. The effect of thermal exposure on the interface and mechanical properties of Al18B4O33W/AZ91 magnesium matrix composite[J]. Materials Science and Engineering: A, 2004, 372 (1/2): 66- 74.
106 LI J , WANG F , WENG W , et al. Characteristic and mechanical properties of magnesium matrix composites reinforced with Mg2B2O5W and B4Cp[J]. Materials & Design, 2012, 37, 533- 536.
107 尚拴军, 邓鹏辉, 蔡刚毅, 等. Mg17Al12热挤压细化对SiCp/AZ91复合材料组织及性能的影响[J]. 材料热处理学报, 2017, 38 (11): 8- 13.
107 SHANG S J , DENG P H , CAI G Y , et al. Effect of hot extrusion refinement of Mg17Al12 on microstructure and mechanical properties of SiCp /AZ91 composites[J]. Trans Mater Heat Treat, 2017, 38 (11): 8- 13.
108 田君, 李文芳, 韩利发, 等. Al2O3-SiO2/AZ91D镁基复合材料的挤压浸渗制备工艺及微观组织和界面的研究[J]. 热加工工艺, 2009, 38 (20): 53- 56.
108 TIAN J , LI W F , HAN L F , et al. Microstructure, interface and fabricating process of Al2O3-SiO2/AZ91D composites prepared by squeeze infiltration[J]. Hot Working Technology, 2009, 38 (20): 53- 56.
109 FUJIWARA H , NISHIMINE Y , KAWAMORI S , et al. Nanoparticle formation in magnesium based composite by Mg/Al2O3 interfacial reaction[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63 (7): 555- 558.
110 WANG W C , LIU J L , ZHAO H H , et al. Enhanced Mg/graphene interface adhesion using intermediate MgO layers: first-principles prediction and analysis[J]. Transactions of Nonferrous Metals Society of China, 2022, 32, 472- 482.
111 WANG N , LIU J , GU W , et al. Toward synergy of carbon and La2O3 in their hybrid as an efficient catalyst for the oxygen reduction reaction[J]. RSC Advances, 2016, 6 (81): 77786- 77795.
112 HUBBARD C R , McCARTHY G J . JCPDS-international centre for diffraction data[J]. Acta Crystallographica Section A, 1981, 37 (1): C344.
[1] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[2] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[3] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
[4] 曾承宗, 林巧力, 曹睿, 陈剑虹. 冷金属过渡条件下AZ61镁合金在两种钢板上的润湿行为[J]. 材料工程, 2017, 45(4): 21-26.
[5] 景鹏展, 朱姝, 余木火, 袁象恺, 刘卫平, 姜正飞. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3): 21-27.
[6] 雷玉成, 刘珍珍, 薛厚禄, 胡文祥, 陈希章, 闫久春. SiCp/6061Al原位合金化焊接增强相界面微结构分析[J]. 材料工程, 2012, 0(1): 55-58.
[7] 胡耀波, 邓娟, 王敬丰, 潘复生, 陈玉安. 高阻尼镁基复合材料研究现状[J]. 材料工程, 2010, 0(1): 89-93,98.
[8] 胡勇, 闫洪, 陈国香. 原位Mg2Si/AM60镁基复合材料半固态组织演变[J]. 材料工程, 2009, 0(6): 56-59.
[9] 李卓然, 樊建新, 冯吉才. 氧化铝陶瓷与低碳钢钎焊接头的界面反应[J]. 材料工程, 2008, 0(9): 1-4.
[10] 苏力争, 杨方, 齐乐华, 俞兴民, 张跃冰. Al18B4O33W/Mg复合材料制备方法及其对材料性能及界面的影响[J]. 材料工程, 2006, 0(2): 61-65.
[11] 李淑波, 吴昆, 郑明毅, 姚忠凯. SiCw/AZ91复合材料及AZ91镁合金的高温压缩变形的研究[J]. 材料工程, 2003, 0(2): 15-18.
[12] 严峰, 吴昆, 赵敏. SiCw/MB15镁基复合材料超塑性[J]. 材料工程, 2000, 0(3): 32-35.
[13] 万怡灶, 王玉林, 成国祥, 杜希文, 罗红林, 曹阳. Al2O3/铜合金复合材料的磨损特性研究[J]. 材料工程, 1997, 0(11): 6-11.
[14] 曾汉民, 张志毅, 彭维周, 蒲天游. CF/PEEK界面微观结构的研究[J]. 材料工程, 1992, 0(6): 4-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn