Research progress in interfacial regulation of magnesium matrix composites
Jingpeng XIONG, Yong LIU()
Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, Advanced Manufacturing School, Nanchang University, Nanchang 330031, China
Interface is a key factor affecting the comprehensive performance of magnesium matrix composites, and how to carry out interfacial modulation has been a hot research topic in magnesium matrix composites. Focusing on three types of interface structures of magnesium matrix composites (coherent, semi-coherent and incoherent) and two key issues (interfacial wettability and interfacial reaction) affecting the interface properties, the research progress of interface optimization schemes was reviewed in this paper and the guidelines for the design and regulation of interfacial structures to achieve good interfacial bonding were proposed: good wettability and slight interfacial reaction. In view of the improvement of interface properties of magnesium matrix composites, the addition of rare earth elements can be considered in the future to purify the interface and improve wettability. The matrix and reinforcement are selected according to engineering needs to obtain composite materials with excellent performance in certain aspects. New reinforcement surface coatings will be developed to fully enhance the capabilities of interfacial bonding. First-principles and other computational simulation methods will be used to deeply explore the relationship between interface structure and interface performance.
The reaction destroys the structure of the reinforcement
[27, 106]
Table 2 增强体与镁的界面反应
Material
Crystal face index
Interplanar spacing/nm
Mismatch/%
Reference
d1
d2
δ1
δ2
α-Mg
(01${\rm{\bar 1}}$1)
0.3209
0.3176
—
—
[41]
MgO
(1${\rm{\bar 1}}$01)
0.2994
0.2970
6.70
6.50
[110]
La2O3
(10${\rm{\bar 1}}$0)
0.3400
0.3400
5.95
7.05
[111]
Sc2O3
(22${\rm{\bar 4}}$2)
0.3060
—
4.60
—
[112]
Li2O
(10${\rm{\bar 1}}$0)
0.3360
—
4.70
—
[112]
Ce2O3
(22${\rm{\bar 4}}$2)
0.2830
—
11.81
—
[112]
Table 3 氧化物与α-Mg的界面特征
Fig.4 不同增强体在镁基体中的润湿性和界面反应(a)及部分复合材料的强塑性关系(b)
1
CHEN L Y , XU J Q , CHOI H S , et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528 (7583): 539- 543.
doi: 10.1038/nature16445
2
PRADO M T , CEPEDA-JIMENEZ C M . Materials science: strength ceiling smashed for light metals[J]. Nature, 2015, 528 (7583): 486- 487.
doi: 10.1038/528486a
3
TRANG T T T , ZHANG J H , KIM J H , et al. Designing a magnesium alloy with high strength and high formability[J]. Nat Commun, 2018, 9 (1): 2522.
doi: 10.1038/s41467-018-04981-4
4
SCHALLER R . Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds, 2003, 355 (1/2): 131- 135.
5
WU Z X , AHMAD R , YIN B , et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys[J]. Science, 2018, 359 (6374): 447- 452.
doi: 10.1126/science.aap8716
ZHANG C Y , LI Z R , FANG D , et al. Tensile behavior and plastic deformation mechanism of SiCP/AZ91D magnesium matrix nanocomposites at room temperature[J]. Journal of Materials Engineering, 2020, 48 (4): 108- 115.
7
WONSIEWICZ B. Plasticity of magnesium crystals[R]. Cambridge: Massachusetts Institute of Technology, 1967.
8
POLLOCK T M . Weight loss with magnesium alloys[J]. Sciense, 2010, 328 (5981): 986- 987.
doi: 10.1126/science.1182848
9
CHANG G , SUN F , DUAN J , et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond[J]. Acta Materialia, 2018, 160, 235- 246.
doi: 10.1016/j.actamat.2018.09.004
10
RICCARDO C , ALBERTO F , GIULIO T , et al. Microstructural and mechanical properties of Al-based composites reinforced with in-situ and ex-situ Al2O3 nanoparticles[J]. Journal of Engineering, 2016, 18 (4): 550- 558.
11
ZHANG X , SONG F , WEI Z , et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Materials Science and Engineering: A, 2017, 705, 153- 159.
doi: 10.1016/j.msea.2017.08.079
YUAN Q H , ZENG X S , LIU Y , et al. Research progress of elastic modulus of magnesium matrix composite reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (1): 86- 97.
HE Y , YUAN Q H , LUO L , et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials, 2018, 38 (4): 26- 36.
14
ABBAS A , HUANG S J , BALLÓKOVÁ B , et al. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process[J]. Tribology International, 2020, 142, 105982.
doi: 10.1016/j.triboint.2019.105982
15
HUANG S J , ABBAS A , BALLÓKOVÁ B . Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy[J]. Journal of Materials Research and Technology, 2019, 8 (5): 4273- 4286.
doi: 10.1016/j.jmrt.2019.07.037
16
ABAZARI S , SHAMSIPUR A , BAKHSHESHI-RAD H R , et al. Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review[J]. Materials (Basel), 2020, 13 (19): 4421.
doi: 10.3390/ma13194421
17
YE H Z , LIU X Y . Review of recent studies in magnesium matrix composites[J]. Journal of Materials Science, 2004, 39 (20): 6153- 6171.
doi: 10.1023/B:JMSC.0000043583.47148.31
18
ZHOU J , YUAN M , LI Z , et al. A great improvement of tensile properties of Cf/AZ91D composite through grafting CNTs onto the surface of the carbon fibers[J]. Materials Science and Engineering: A, 2019, 762, 138061.
doi: 10.1016/j.msea.2019.138061
19
LI H , DAI X , ZHAO L , et al. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process[J]. Journal of Alloys and Compounds, 2019, 785, 146- 155.
doi: 10.1016/j.jallcom.2019.01.144
20
VAHEDI F , ZAREI-HANZAKI A , SALANDARI-RABORI A , et al. Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles[J]. Journal of Alloys and Compounds, 2020, 815, 152231.
doi: 10.1016/j.jallcom.2019.152231
21
LIM C Y H , LIM S C , GUPTA M . Wear behaviour of SiCp-reinforced magnesium matrix composites[J]. Wear, 2003, 255 (1/6): 629- 637.
22
YAO Y , CHEN L . Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique[J]. Journal of Materials Science & Technology, 2014, 30 (7): 661- 665.
23
CAO W , ZHANG C , FAN T , et al. In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites[J]. Materials Science and Engineering: A, 2008, 496 (1/2): 242- 246.
24
MOUNIB M , PAVESE M , BADINI C , et al. Reactivity and microstructure of Al2O3-reinforced magnesium-matrix composites[J]. Advances in Materials Science and Engineering, 2014, 2014, 1- 6.
25
BHINGOLE P P , CHAUDHARI G P , NATH S K . Processing, microstructure and properties of ultrasonically processed in situ MgO-Al2O3-MgAl2O4 dispersed magnesium alloy composites[J]. Composites: Part A, 2014, 66, 209- 217.
doi: 10.1016/j.compositesa.2014.08.001
26
ZHENG M , WU K , YAO C , et al. Squeeze cast Al18B4O33 whisker-reinforced magnesium matrix composite[J]. Journal of Materials Science Letters, 2002, 21 (7): 533- 535.
doi: 10.1023/A:1015496619283
27
CHEN S H , JIN P P , SCHUMACHER G , et al. Microstructure and interface characterization of a cast Mg2B2O5 whisker reinforced AZ91D magnesium alloy composite[J]. Composites Science and Technology, 2010, 70 (1): 123- 129.
doi: 10.1016/j.compscitech.2009.09.015
28
WANG H Y , JIANG Q C , ZHAO Y Q , et al. Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J]. Materials Science and Engineering: A, 2004, 372 (1/2): 109- 114.
29
KATSAROU L , MOUNIB M , LEFEBVRE W , et al. Microstructure, mechanical properties and creep of magnesium alloy Elektron 21 reinforced with AlN nanoparticles by ultrasound-assisted stirring[J]. Materials Science and Engineering: A, 2016, 659, 84- 92.
doi: 10.1016/j.msea.2016.02.042
FAN T X , LIU Y , YANG K M , et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites[J]. Acta Metallurgica Sinica, 2018, 55 (1): 16- 32.
FENG Y , CHEN C , PENG C Q , et al. Research progress on magnesium matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (12): 2385- 2407.
33
LU K . Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1 (5): 16019.
doi: 10.1038/natrevmats.2016.19
34
NIE K B , WANG X J , HU X S , et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration[J]. Materials Science and Engineering: A, 2011, 528 (15): 5278- 5282.
doi: 10.1016/j.msea.2011.03.061
35
LAN J , YANG Y , LI X . Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Engineering: A, 2004, 386 (1/2): 284- 290.
36
YANG X , WANG F , FAN Z . Crystallographic study of nucleation in SiC particulate reinforced magnesium matrix composite[J]. Journal of Alloys and Compounds, 2017, 706, 430- 437.
doi: 10.1016/j.jallcom.2017.02.246
37
LUO A . Heterogeneous nucleation and grain refinement in cast Mg(AZ91)/SiC metal matrix composites[J]. Canadian Metallurgical Quarterly, 1996, 35 (4): 375- 383.
doi: 10.1179/cmq.1996.35.4.375
38
WANG Y , FAN Z , ZHOU X , et al. Characterisation of magnesium oxide and its interface with α-Mg in Mg-Al-based alloys[J]. Philosophical Magazine Letters, 2011, 91 (8): 516- 529.
doi: 10.1080/09500839.2011.591744
39
YUAN Q H , ZENG X S , LIU Y , et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon, 2016, 96, 843- 855.
doi: 10.1016/j.carbon.2015.10.018
YUAN Q H , ZHOU G H , LIAO L , et al. Microstructures and mechanical properties of Mg-based composites reinforced with different nano-carbon materials[J]. Transactions of Nonferrous Metals Society of China, 2021, 31 (1): 30- 41.
41
YUAN Q H , ZHOU G H , LIAO L , et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127, 177- 186.
doi: 10.1016/j.carbon.2017.10.090
42
HAN G , DU W , YE X , et al. Compelling mechanical properties of carbon nanotubes reinforced pure magnesium composite by effective interface bonding of Mg2Ni[J]. Journal of Alloys and Compounds, 2017, 727, 963- 969.
doi: 10.1016/j.jallcom.2017.08.133
43
IIJIMA S . Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56- 58.
doi: 10.1038/354056a0
44
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
45
UOZUMI H , KOBAYASHI K , NAKANISHI K , et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting[J]. Materials Science and Engineering: A, 2008, 495 (1/2): 282- 287.
46
WU F , ZHU J , CHEN Y , et al. The effects of processing on the microstructures and properties of Gr/Mg composites[J]. Materials Science and Engineering: A, 2000, 277 (1/2): 143- 147.
WANG X J , XIANG Y Y , HU X S , et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials[J]. Acta Metallurgica Sinica, 2019, 55 (1): 73- 86.
WANG T , HUANG X F , LIANG Y , et al. New ideas of compound reinforcement of particulate reinforced magnesium matrix composite[J]. Hot Working Technology, 2008, 37 (20): 98- 103.
doi: 10.3969/j.issn.1001-3814.2008.20.033
ZHANG Q , QI L H , LI H J . Research progress on manufacture processes and interface of CNTs/Mg composites: a review[J]. Materials Science and Technology, 2020, 28 (3): 76- 88.
LIU G J , LI W F , DU J . Investigation on wettability of Al-Mg metal matrix composites[J]. Foundry, 2006, 55 (9): 911- 915.
doi: 10.3321/j.issn:1001-4977.2006.09.010
51
GOOD R J . A thermodynamic derivation of Wenzel's modification of Young's equation for contact angles; together with a theory of hysteresis1[J]. Journal of the American Chemical Society, 2002, 74 (20): 5041- 5042.
52
ZHANG D , SHEN P , SHI L , et al. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates[J]. Applied Surface Science, 2010, 256 (23): 7043- 7047.
doi: 10.1016/j.apsusc.2010.05.022
53
ZHANG D , SHEN P , SHI L , et al. Wetting of B4C, TiC and graphite substrates by molten Mg[J]. Materials Chemistry and Physics, 2011, 130 (1/2): 665- 671.
54
ASAVAVISITHCHAI S , KENNEDY A . The effect of Mg addition on the stability of Al-Al2O3 foams made by a powder metallurgy route[J]. Scripta Materialia, 2006, 54 (7): 1331- 1334.
doi: 10.1016/j.scriptamat.2005.12.015
55
BAHRAMI A , PECH-CANUL M I , GUTIÉRREZ C A , et al. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys[J]. Applied Surface Science, 2015, 357, 1104- 1113.
doi: 10.1016/j.apsusc.2015.09.137
56
WANG Y , WANG H Y , XIU K , et al. Fabrication of TiB2 particulate reinforced magnesium matrix composites by two-step processing method[J]. Materials Letters, 2006, 60 (12): 1533- 1537.
doi: 10.1016/j.matlet.2005.11.065
57
DE LA PEÑA J L , PECH-CANUL M I . Reactive wetting and spreading of Al-Si-Mg alloys on Si3N4/Si substrates[J]. Materials Science and Engineering: A, 2008, 491 (1/2): 461- 469.
58
BEDOLLA E , LEMUS-RUIZ J , CONTRERAS A . Synthesis and characterization of Mg-AZ91/AlN composites[J]. Materials & Design, 2012, 38, 91- 98.
59
KVASHNIN D G , KRASHENINNIKOV A V , SHTANSKY D , et al. Nanostructured BN-Mg composites: features of interface bonding and mechanical properties[J]. Phys Chem Chem Phys, 2016, 18 (2): 965- 969.
doi: 10.1039/C5CP06289F
60
YANG J , ZHANG Z , MEN X , et al. Thermo-responsive surface wettability on a pristine carbon nanotube film[J]. Carbon, 2011, 49 (1): 19- 23.
doi: 10.1016/j.carbon.2010.08.033
61
RASHAD M , PAN F , HU H , et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J]. Materials Science and Engineering: A, 2015, 630, 36- 44.
doi: 10.1016/j.msea.2015.02.002
62
PEI Z L , LI K , GONG J , et al. Micro-structural and tensile strength analyses on the magnesium matrix composites reinforced with coated carbon fiber[J]. Journal of Materials Science, 2009, 44 (15): 4124- 4131.
doi: 10.1007/s10853-009-3604-7
FANG X , FAN T X , ZHANG D . Thermodynamic prediction models for work of adhesion in metal/ceramic systems[J]. Materials Reports, 2013, 27 (11): 130- 133.
LI X L , WANG H Y , JIANG Q C . The present status and developing trends of particulate reinforced magnesium matrix composites[J]. Materials Science and Technology, 2001, 9 (2): 219- 224.
66
PEI R , CHEN G , ZHANG S , et al. Effects of Gd element and SiC particles on microstructures of Cf/Mg composites[J]. Micron, 2014, 64, 1- 5.
doi: 10.1016/j.micron.2014.03.007
LI G D , LI Z X , GU J M , et al. Wetting and spreading behavior of Mg-Zn-Al solder under ultrasonic vibration[J]. Journal of Materials Engineering, 2016, 44 (7): 43- 48.
68
LI C D , WANG X J , LIU W Q , et al. Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite[J]. Materials & Design, 2014, 58, 204- 208.
69
HASHIM J , LOONEY L , HASHMI M S J . The enhancement of wettability of SiC particles in cast aluminium matrix composites[J]. Journal of Materials Processing Technology, 2001, 119 (1/3): 329- 335.
70
WU G H , SONG M H , XIU Z Y , et al. Microstructure and properties of M40 carbon fibre reinforced Mg-Re-Zr alloy composites[J]. Journal of Materials Science & Technology, 2009, 25 (3): 423- 426.
71
PEETERBROECK S , LAOUTID F , SWOBODA B , et al. How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites?[J]. Macromolecular Rapid Communications, 2007, 28 (3): 260- 264.
72
CHU K , WANG J , LIU Y P , et al. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites[J]. Carbon, 2018, 140, 112- 123.
73
DU X , DU W , WANG Z , et al. Defects in graphene nanoplatelets and their interface behavior to reinforce magnesium alloys[J]. Applied Surface Science, 2019, 484, 414- 423.
YU Z Q , WU G H , SUN D L . Reinforcement coatings and interfaces in aluminium metal matrix composites[J]. Journal of Materials Engineering, 2001, (10): 13- 17.
75
NAI M H , WEI J , GUPTA M . Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites[J]. Materials & Design, 2014, 60, 490- 495.
LU P , XIA C J , WANG H W , et al. Study on Zinc-coated Cr/Mg Composite[J]. Hot Working Technology, 2009, 38 (10): 122- 127.
77
WANG H , ZHANG Z H , HU Z Y , et al. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes[J]. Sci Rep, 2016, 6, 26258.
78
JAGANNATHAM M , SANKARAN S , HARIDOSS P . Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering: A, 2015, 638, 197- 207.
79
FENG Y , REN J , DONG C , et al. Microstructures and properties of Ti-coated SiCp reinforced Al-Si alloy composites[J]. JOM, 2016, 69 (4): 756- 762.
HAO Y X , YANG X J , LU L D , et al. Properties of YSZ coated carbon fiber/epoxy resin composite[J]. Journal of Materials Science and Engineering, 2004, 22 (2): 164- 167.
81
ARDILA-RODRíGUEZ L A , MENEZES B R C , PEREIRA L A , et al. Titanium dioxide protection against Al4C3 formation during fabrication of aluminum-TiO2 coated MWCNT composite[J]. Journal of Alloys and Compounds, 2019, 780, 772- 782.
82
WANG M , ZHAO Y , WANG L D , et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process[J]. Carbon, 2018, 139, 954- 963.
HUA W J , CHEN D M , ZHAO J P . Study on structure and characteristics of cathode sputtering SiC coating carbon fiber[J]. Acta Materiae Compositae Sinica, 1999, 16 (3): 74- 78.
LI S B , LI Y K , LONG Y F , et al. Anti-thermal oxidation resistance of carbon fibers[J]. Journal of National University of Defense Technology, 1998, 20 (6): 118- 121.
85
BOUIX J , BERTHET M , BOSSELET F , et al. Physico-chemistry of interfaces in inorganic-matrix composites[J]. Composites Science and Technology, 2001, 61 (3): 355- 362.
86
REISCHER F , PIPPEL E , WOLTERSDORF J , et al. Carbon fibre-reinforced magnesium: improvement of bending strength by nanodesign of boron nitride interlayers[J]. Materials Chemistry and Physics, 2007, 104 (1): 83- 87.
87
KÖRNER C , SCHÄFF W , OTTMVLLER M , et al. Carbon long fiber reinforced magnesium alloys[J]. Advanced Engineering Materials, 2000, 2 (6): 327- 337.
88
PARK Y , CHO K , PARK I , et al. Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes[J]. Procedia Engineering, 2011, 10, 1446- 1450.
MEI Z , CUI K , WU R J , et al. Surface treatment of particulate reinforcements[J]. Development and Application of Materials, 1997, (4): 32- 34.
90
AMATEAU M F . Progress in the development of graphite-aluminum composites using liquid infiltration technology[J]. Journal of Composite Materials, 1976, 10 (4): 279- 296.
LI S N , SHEN J L , YU T Q , et al. Effect of different plating carbon nanotubes on mechanical properties of magnesium matrix composite[J]. Foundry Technol, 2004, 25 (8): 590- 595.
92
YUAN Q H , ZENG X , WANG Y , et al. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs[J]. Journal of Materials Science & Technology, 2017, 33 (5): 452- 460.
LI S J , ZHOU H T , YING T , et al. Effect of surface coating on microstructure and properties of carbon fiber magnesium matrix composites[J]. Foundry Technol, 2021, 42 (2): 69- 84.
94
POPOVSKA N , GERHARD H , WURM D , et al. Chemical vapor deposition of titanium nitride on carbon fibres as a protective layer in metal matrix composites[J]. Materials & Design, 1997, 18 (4/6): 239- 242.
95
XIANG S , WANG X , GUPTA M , et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Scientific Reports, 2016, 6 (1): 38824.
ZHOU H T , WANG Y B , XIAO L , et al. Research status and developing trends of preparation and interface control of magnesium matrix composites with carbon-containing reinforcements[J]. Chinese Journal of Materials Research, 2020, 34 (11): 801- 810.
97
RAWAL S P . Interface structure in graphite-fiber-reinforced metal-matrix composites[J]. Surface and Interface Analysis, 2001, 31 (7): 692- 700.
98
PÉREZ P , GARCÉS G , ADEVA P . Mechanical properties of a Mg-10 (vol.%)Ti composite[J]. Composites Science and Technology, 2004, 64 (1): 145- 151.
99
HASSAN S F , GUPTA M . Development of ductile magnesium composite materials using titanium as reinforcement[J]. Journal of Alloys and Compounds, 2002, 345 (1/2): 246- 251.
100
LANDRY K , KALOGEROPOULOU S , EUSTATHOPOULOS N . Wettability of carbon by aluminum and aluminum alloys[J]. Materials Science and Engineering: A, 1998, 254 (1/2): 99- 111.
101
FUKUDA H , KONDOH K , UMEDA J , et al. Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6wt.% Al alloy matrix composites reinforced with carbon nanotubes[J]. Composites Science and Technology, 2011, 71 (5): 705- 709.
102
HASSAN S F , GUPTA M . Development of a novel magnesium-copper based composite with improved mechanical properties[J]. Materials Research Bulletin, 2002, 37 (2): 377- 389.
JIN T N , NIE Z R , LI D X . Microstructure of (SiCw + B4Cp)/AZ91 magnesium alloy composite[J]. Transactions of Nonferrous Metals Society of China, 2002, 12 (1): 110- 114.
LIU G J , LI W F , PENG J H , et al. Interface reaction and thermodynamic analysis on the magnesium alloy matrix composite reinforced with alumina silicate short fibers[J]. Acta Materiae Compositae Sinica, 2007, 24 (2): 7- 12.
105
ZHENG M Y , WU K , LIANG M , et al. The effect of thermal exposure on the interface and mechanical properties of Al18B4O33W/AZ91 magnesium matrix composite[J]. Materials Science and Engineering: A, 2004, 372 (1/2): 66- 74.
106
LI J , WANG F , WENG W , et al. Characteristic and mechanical properties of magnesium matrix composites reinforced with Mg2B2O5W and B4Cp[J]. Materials & Design, 2012, 37, 533- 536.
SHANG S J , DENG P H , CAI G Y , et al. Effect of hot extrusion refinement of Mg17Al12 on microstructure and mechanical properties of SiCp /AZ91 composites[J]. Trans Mater Heat Treat, 2017, 38 (11): 8- 13.
TIAN J , LI W F , HAN L F , et al. Microstructure, interface and fabricating process of Al2O3-SiO2/AZ91D composites prepared by squeeze infiltration[J]. Hot Working Technology, 2009, 38 (20): 53- 56.
109
FUJIWARA H , NISHIMINE Y , KAWAMORI S , et al. Nanoparticle formation in magnesium based composite by Mg/Al2O3 interfacial reaction[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63 (7): 555- 558.
110
WANG W C , LIU J L , ZHAO H H , et al. Enhanced Mg/graphene interface adhesion using intermediate MgO layers: first-principles prediction and analysis[J]. Transactions of Nonferrous Metals Society of China, 2022, 32, 472- 482.
111
WANG N , LIU J , GU W , et al. Toward synergy of carbon and La2O3 in their hybrid as an efficient catalyst for the oxygen reduction reaction[J]. RSC Advances, 2016, 6 (81): 77786- 77795.
112
HUBBARD C R , McCARTHY G J . JCPDS-international centre for diffraction data[J]. Acta Crystallographica Section A, 1981, 37 (1): C344.