Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (11): 173-181    DOI: 10.11868/j.issn.1001-4381.2021.001231
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Pr6O11对合成金刚石单晶各向异性的刻蚀
朱振东, 肖长江(), 马金明, 栗正新
河南工业大学 材料科学与工程学院, 郑州 450001
Anisotropy etching of synthetic diamond single crystals by Pr6O11 powder
Zhendong ZHU, Changjiang XIAO(), Jinming MA, Zhengxin LI
School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
全文: PDF(14575 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了探究稀土氧化物对合成金刚石单晶的各向异性刻蚀,在氮气保护下,在750~950℃内用Pr6O11对合成金刚石单晶进行刻蚀。采用扫描电子显微分析、热重分析、X射线衍射和拉曼光谱等技术对刻蚀后金刚石单晶不同晶面的表面形貌、物相组成和刻蚀机理进行表征与分析。采用最大刻蚀深度、单颗粒抗压强度和冲击韧性来表征刻蚀前后金刚石性能的变化。结果表明:Pr6O11对金刚石{100}面和{111}面的刻蚀程度和形貌均不同;当温度为750℃时,Pr6O11对金刚石单晶已有一定程度的刻蚀,随刻蚀温度的增加,刻蚀加剧,且金刚石{111}面的刻蚀程度比{100}面严重;{111}面刻蚀坑形貌从三角形变为层状结构三角形,{100}面由轻微的四边形变为类蜂窝状刻蚀坑;{111}面最大刻蚀深度从1.12 μm增加到12.54 μm,而{100}面只从0.30 μm增加到2.11 μm;金刚石单颗粒的抗压强度由未刻蚀金刚石的576.25 N降低到最小530.06 N,冲击韧性由92.94 J/cm2减小到88.53 J/cm2;Pr6O11对金刚石单晶的刻蚀机理在885℃前为催化石墨化,885℃后为催化石墨化和氧化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱振东
肖长江
马金明
栗正新
关键词 金刚石单晶氧化镨各向异性刻蚀刻蚀机理性能    
Abstract

The work aims to explore the anisotropic etching of synthetic diamond single crystal by rare earth oxide. Under the protection of nitrogen, synthetic diamond single crystals were etched by Pr6O11 powder at 750-950℃. The surface morphology, phase composition and etching mechanism of different crystal surfaces of diamond single crystal after etching were characterized and analyzed by means of scanning electron microscopy, thermogravimetric analysis, X-ray diffraction and Raman spectroscopy, and the changes of diamond properties before and after etching were characterized by surface roughness, single particle compressive strength and impact toughness. The results show that the etching degree and morphology of {100} faces and {111} faces of diamond by Pr6O11 are different. When the temperature is 750℃, Pr6O11 etches slightly diamond crystals. The etching intensifies with the increase of etching temperature, moreover the etching degree of diamond {111} faces is more serious than that of {100} faces. The morphologies of the etching pits of diamond {111} faces change from triangular etching pits to layered triangular ones, and {100} faces change from slight quadrilateral to honeycomb-like etching pits. The maximum etching depth of {100} face increases from 1.12 μm to 12.54 μm, while the maximum etching depth of {111} face increases from 0.3 μm to 2.11 mm. The compressive strength of single diamond particle decreases from 576.25 N of unetched diamond to the smallest value of 530.06 N, and the impact toughness decreases from 92.94 J/cm2to 88.53 J/cm2. The etching mechanism of diamond single crystal by Pr6O11 is catalytic graphitization before 885℃, and the catalytic graphitization and oxidation after 885℃.

Key wordsdiamond single crystal    Pr6O11    anisotropic etching    etching mechanism    property
收稿日期: 2021-12-28      出版日期: 2022-11-17
中图分类号:  TG732  
基金资助:2022年度省教育厅重点科研项目(22B4300152)
通讯作者: 肖长江     E-mail: cjxiao@haut.edu.cn
作者简介: 肖长江(1969—), 男, 副教授, 博士, 主要研究方向: 超硬材料及其制品, 联系地址: 河南省郑州市高新区莲花街100号河南工业大学材料科学与工程学院(450001), E-mail: cjxiao@haut.edu.cn
引用本文:   
朱振东, 肖长江, 马金明, 栗正新. Pr6O11对合成金刚石单晶各向异性的刻蚀[J]. 材料工程, 2022, 50(11): 173-181.
Zhendong ZHU, Changjiang XIAO, Jinming MA, Zhengxin LI. Anisotropy etching of synthetic diamond single crystals by Pr6O11 powder. Journal of Materials Engineering, 2022, 50(11): 173-181.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001231      或      http://jme.biam.ac.cn/CN/Y2022/V50/I11/173
Fig.1  不同温度Pr6O11刻蚀金刚石{111}面后的表面形貌
(a)750 ℃;(b)800 ℃;(c)850 ℃;(d)900 ℃;(e)950 ℃
Fig.2  不同温度Pr6O11刻蚀金刚石{100}面后的表面形貌
(a)750 ℃;(b)800 ℃;(c)850 ℃;(d)900 ℃;(e)950 ℃
Fig.3  不同处理条件下金刚石刻蚀过程中的TG曲线
Fig.4  不同温度下Pr6O11和金刚石混合物的XRD图
Fig.5  原始Pr6O11粉末900 ℃处理前后的XRD图
Fig.6  Pr6O11刻蚀后金刚石的拉曼光谱图
(a){111}面;(b){100}面
Fig.7  金刚石单晶的原子排布
(a){111}面;(b){100}面
Fig.8  金刚石表面原子层数与表面能的关系
Fig.9  金刚石的原子排布图
(a)金刚石原子的三维取向图;(b){111}面;(c){100}面
Fig.10  Pr6O11刻蚀后金刚石表面刻蚀坑转变示意图
(a){111}面;(b){100}面
Fig.11  Pr6O11刻蚀后金刚石{111}面和{100}面的最大刻蚀深度
Fig.12  Pr6O11刻蚀后的金刚石单颗粒抗压强度
Etching temperature/℃ TI/(J·cm-2) ΔTI/%
Raw diamond 92.94 -
750 92.58 -0.36
800 91.97 -0.97
850 90.88 -2.06
900 90.01 -2.93
950 88.53 -4.41
Table 1  不同温度下Pr6O11刻蚀后金刚石的冲击韧性
1 PATELS R . Structure of etch-pits on diamond surfaces[J]. Physics, 1961, 27, 1097- 1100.
2 PATELS R . Mechanism of etching and development of etch figures on octahedral faces of diamond[J]. Physica, 1962, 28, 44- 51.
doi: 10.1016/0031-8914(62)90090-3
3 PATELS R , RAMANATHA N . Triangular pyramids on the octahedral faces of synthetic diamonds[J]. Physica, 1963, 29, 889- 895.
doi: 10.1016/S0031-8914(63)80259-1
4 SANDHU G S , CHUA W K . Reactive ion etching of diamond[J]. Applied Physics Letters, 1989, 55 (5): 4371- 4374.
5 CHU C , PAN C , MARGRAVE J , et al. F2, H2O, and O2 etching rates of diamond and the effects of F2, HF and H2O on the molecular O2 etching of (110) diamond[J]. Diamond and Related Materials, 1995, 4 (12): 1317- 1324.
doi: 10.1016/0925-9635(95)00311-8
6 MATUMOTO S , SETAKA N . Thermal desorption spectra of hydrogenated and water treated diamond powders[J]. Carbon, 1979, 17, 485- 489.
doi: 10.1016/0008-6223(79)90038-1
7 ANDREW F . Halogenation of diamond (100) and (111) surfaces by atomic beams[J]. Journal of Applied Physics, 1994, 75 (6): 3112- 3120.
doi: 10.1063/1.356163
8 JOHNSON C E , HASTING M A S , WEIMER W A . Thermogravimetric analysis of the oxidation of CVD diamond films[J]. Journal of Materials Research, 1990, 5 (11): 2320- 2325.
doi: 10.1557/JMR.1990.2320
9 THEIJE F K D , ROY O , LAAG N J V D , et al. Oxidative etching of diamond[J]. Diamond and Related Materials, 2000, 9 (3/6): 929- 934.
10 THEIJE F K D , LAAG N J V D , PLOMP M , et al. A surface topographic investigation of {001} diamond surfaces etched in oxygen[J]. Philosophical Magazine A, 2000, 80 (3): 725- 745.
doi: 10.1080/01418610008212078
11 THEIJE F K D , VEENENDAAL E V , ENCKEVORT W J P V , et al. Oxidative etching of cleaved synthetic diamond {111} surfaces[J]. Surface Science, 2001, 492 (1/2): 91- 105.
12 SMIRNOV W , HEES J J , BRINK D , et al. Anisotropic etching of diamond by molten Ni particles[J]. Applied Physics Letters, 2010, 97 (7): 31171- 31174.
13 MEHEDI H , ARNAULT J , EON D , et al. Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores[J]. Carbon, 2013, 59, 448- 456.
doi: 10.1016/j.carbon.2013.03.038
14 WANG JUNSHA , WANLONG , CHEN JING , et al. Surface patterning of synthetic diamond crystallites using nickel powder[J]. Diamond and Related Materials, 2016, 66, 206- 212.
doi: 10.1016/j.diamond.2016.04.010
15 NAGAI M , NAKANISHI K , TAKAHASHI H . Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high temperature water vapour[J]. Scientific Reports, 2018, 8, 6687.
doi: 10.1038/s41598-018-25193-2
16 KONISHI S , OHASHI T , SUGIMOTO W , et al. Effect of the crystal plane on the catalytic etching behavior of diamond crystallites by cobalt nanoparticles[J]. Chemistry Letters, 2006, 35 (11): 1216- 1217.
doi: 10.1246/cl.2006.1216
17 WANG J S , WAN L , CHEN J , et al. Micropatterning of diamond crystallites via cobalt catalyzed thermochemical etching[J]. Journal of Materials Science, 2017, 52, 709- 720.
doi: 10.1007/s10853-016-0365-y
18 MEHEDI H A , HEBERT C , RUFFINATTO S , et al. Formation of oriented nanostructures in diamond using metallic nanoparticles[J]. Nano Technology, 2012, 23, 455302- 453308.
19 OHASHI T , SUGIMOTO W , TAKASU Y . Catalytic etching of synthetic diamond crystallites by iron[J]. Applied Surface Science, 2012, 258, 8128- 8133.
doi: 10.1016/j.apsusc.2012.05.007
20 WANG J S , WAN L , CHEN J , et al. Anisotropy of synthetic diamond in catalytic etching using iron powder[J]. Applied Surface Science, 2015, 346, 388- 393.
doi: 10.1016/j.apsusc.2015.04.022
21 UEMURA M . An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds[J]. Tribology International, 2004, 37 (11/12): 887- 892.
22 邵增明, 苏彦宾, 张存升. 无氢气氛下铁对金刚石的刻蚀[J]. 金刚石与磨料磨具工程, 2019, 39 (5): 13- 15.
doi: 10.13394/j.cnki.jgszz.2019.5.0003
22 SHAO Z M , SU Y B , ZHANG C S . Iron etching of diamond in hydrogen-free atmosphere[J]. Diamond & Abrasives Engineering, 2019, 39 (5): 13- 15.
doi: 10.13394/j.cnki.jgszz.2019.5.0003
23 PATEL A R , RAMANATHAN S . Etch pits on diamond surfaces[J]. Philosophical Magazine, 1962, 7, 1305- 1314.
doi: 10.1080/14786436208213164
24 周肖璇. 铁钻盐对人造金刚石单晶腐蚀的研究[D]. 长沙: 湖南大学, 2016.
24 ZHOU X X. Research on etching of synthetic diamond by iron cobalt salts[D]. Changsha: Hunan University, 2016.
25 LI L Y , CHEN X , ZHANG W , et al. Characterization and formation mechanism of pits on diamond {100} face etched by molten potassium nitrite[J]. International Journal of Refractory Metals & Hard Materials, 2018, 71, 129- 134.
26 ACHARD J , SILVA F , BRINZA O . Identification of etch-pit crystallographic faces induced on diamond surface by H2/O2 etching plasma treatment[J]. Physica Status Solidi A, 2009, 206 (9): 1949- 1954.
doi: 10.1002/pssa.200982210
27 LIU D , GOU L , XU J J . Investigations on etching resistance of undoped and boron doped polycrystalline diamond films by oxygen plasma etching[J]. Vacuum, 2016, 128, 80- 84.
doi: 10.1016/j.vacuum.2016.03.012
28 KANG X , ZHANGZ H Q , LI G . Improvement in electrical conductivity of boron-doped diamond films after hydrogen plasma and vacuum heat treatment[J]. Applied Surface Science, 2020, 526, 146738- 146742.
doi: 10.1016/j.apsusc.2020.146738
29 NOBUTERU T , MOKUNO Y , SHIKATA S . Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment[J]. Diamond & Related Materials, 2016, 63, 43- 46.
30 HIROKI K , TOSHIHARU M , SATOSHI Y , et al. Mechanism of anisotropic etching on diamond (111) surfaces by a hydrogen plasma treatment[J]. Applied Surface Science, 2017, 422, 452- 455.
doi: 10.1016/j.apsusc.2017.06.005
31 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34 (7): 14045- 14050.
31 XIAO C J , DOU Z Q , ZHU Z D . Characterization and formation mechanism of surface morphology on diamond etched by Fe2O3 powder[J]. Materials Reports, 2020, 34 (7): 14045- 14050.
32 肖长江, 陈怡光, 栗正新. MnO2对金刚石单晶的刻蚀研究[J]. 金刚石与磨料磨具工程, 2019, 39 (5): 1- 6.
32 XIAO C J , CHEN Y G , LI Z X . Study on etching of diamond single crystals by MnO2[J]. Diamond & Abrasives Engineering, 2019, 39 (5): 1- 6.
33 王俊沙. 铁族金属及其盐对人造金刚石单晶腐蚀研究[D]. 长沙: 湖南大学, 2016.
33 WANG J S. Study on etching of synthetic diamond crystallites by iron group metals and iron-group metal salts[D]. Changsha: Hunan University, 2016.
34 王秀芳, 李统业. Sb2O3掺杂对Pr6O11压敏电阻微结构和电学性能的影响[J]. 人工晶体学报, 2013, 42 (6): 1041- 1045.
doi: 10.3969/j.issn.1000-985X.2013.06.009
34 WANG X F , LI T Y . Effect of Sb2O3 doping on the microstructure and electrical properties of Pr6O11 varistors[J]. Journal of Synthetic Crystals, 2013, 42 (6): 1041- 1045.
doi: 10.3969/j.issn.1000-985X.2013.06.009
35 WANG X F , LI T Y . Effect of Sb2O3doping on the microstructure and electrical properties of Pr6O11 varistors[J]. Journal of Synthetic Crystals, 2013, 42 (6): 1041- 1045.
doi: 10.3969/j.issn.1000-985X.2013.06.009
36 王莹. Pr6O11/SnO2复合材料的制备及对异丙醇气敏特性的研究[J]. 传感技术学报, 2020, 33 (3): 311- 316.
36 WANG Y . Preparation of Pr6O11/SnO2 composites and their gas sensing properties for isopropanol[J]. Chinese Journal of Sensors and Actuators, 2020, 33 (3): 311- 316.
37 陈静, 万隆, 王俊沙, 等. 温度对铁粉催化腐蚀人造金刚石单晶的影响[J]. 人工晶体学报, 2015, 44 (6): 1448- 1453.
doi: 10.3969/j.issn.1000-985X.2015.06.005
37 CHEN J , WAN L , WANG J S , et al. Effect of temperature on the catalytic etching behavior of synthetic diamond single crystals by iron powder[J]. Journal of Synthetic Crystals, 2015, 44 (6): 1448- 1453.
doi: 10.3969/j.issn.1000-985X.2015.06.005
38 YANA F , DANTE C . Diamond oxidation at atmospheric pressure: development of surface features and the effect of oxygen fugacity[J]. European Journal of Mineralogy, 2009, 21 (3): 623- 635.
doi: 10.1127/0935-1221/2009/0021-1929
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 陈小龙, 李文生, 娄明, 徐凯, 陈雷雷, 常可可. Fe-Ni基合金设计中前过渡族元素对结构与性能的影响[J]. 材料工程, 2022, 50(9): 32-42.
[3] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[4] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[5] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[8] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[9] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[10] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[11] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[12] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[13] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[14] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[15] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn