Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 102-109    DOI: 10.11868/j.issn.1001-4381.2021.001238
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能
倪洪江1,2,*(), 邢宇1,2, 戴霄翔1,2, 李军1,2, 张代军1,2, 陈祥宝1,2,*()
1 中国航发北京航空材料研究院 软材料技术研究中心, 北京 100095
2 先进复合材料国防科技重点实验室, 北京 100095
Curing process and thermal stability of polyimide-matrix composite for aero-engines
Hongjiang NI1,2,*(), Yu XING1,2, Xiaoxiang DAI1,2, Jun LI1,2, Daijun ZHANG1,2, Xiangbao CHEN1,2,*()
1 Research Center of Soft Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 National Key Laboratory of Advanced Composites, Beijing 100095, China
全文: PDF(10962 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

针对航空发动机的需求,开展聚酰亚胺树脂基结构复合材料固化工艺与热稳定性评价研究。建立EC-380A树脂的固化动力学方程,模拟树脂固化度随温度和时间的变化。进一步结合树脂流变特性,制定并验证EC-380A复合材料固化成型工艺,制备发动机大尺寸复合材料典型件。通过热老化失重、预置缺陷层合板内部质量和力学性能,评价复合材料的热稳定性。采用330~380℃多温度分级固化的方法,复合材料可整体铺贴无缺陷热压成型。复合材料热稳定性优异,具备370~400℃耐温能力,370℃和285℃累计热老化1000 h,复合材料失重在1.3%左右;400℃热老化后,复合材料无新增缺陷、预置缺陷无扩展,表现出高温结构稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪洪江
邢宇
戴霄翔
李军
张代军
陈祥宝
关键词 航空发动机复合材料聚酰亚胺固化工艺热稳定性预置缺陷    
Abstract

Aiming at the need of aero-engines, investigation was made into the curing process and thermal stability of a polyimide-matrix structural composite. The curing kinetic equation of EC-380A resin was established. The curing degree of the resin was simulated as a function of the curing temperature and time. Further, combined with the resin rheology, the curing process of the EC-380A composite was established and verified. Large-scaled aero-engine typical structural components were fabricated. Thermal stability of the composite was estimated by mass loss, internal quality of the flaw-embedded laminate, and mechanical property after thermal ageing. By multi-temperature step curing at 330-380℃, the flaw-free composite could be manufactured under the circumstance of an integrated layup. The composite has excellent thermal stability with thermal resistance of 370-400℃. The mass loss rate is around 1.3% after ageing for 1000 h at 370℃ and 285℃.No new flaw or propagation of the embedded flaw occurs for the composite after thermal ageing at 400℃, indicating a high-temperature structural stability.

Key wordscomposite for aero-engine    polyimide    curing process    thermal stability    embedded flaw
收稿日期: 2021-12-28      出版日期: 2022-07-18
中图分类号:  V258  
基金资助:中国科协青年人才托举工程项目(2019QNRC001);国家科技重大专项(J2019-Ⅵ-0013)
通讯作者: 倪洪江,陈祥宝     E-mail: nihongjiang@iccas.ac.cn;xiangbao.chen@biam.ac.cn
作者简介: 陈祥宝(1956—), 男, 研究员, 博士, 主要从事复合材料树脂基体、成型工艺和低成本技术研究, 联系地址: 北京81信箱3分箱(100095), E-mail: xiangbao.chen@biam.ac.cn
倪洪江(1987—), 男, 高级工程师, 博士, 主要从事聚酰亚胺材料及树脂基复合材料的研究, 联系地址: 北京81信箱3分箱(100095), E-mail: nihongjiang@iccas.ac.cn
引用本文:   
倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
Hongjiang NI, Yu XING, Xiaoxiang DAI, Jun LI, Daijun ZHANG, Xiangbao CHEN. Curing process and thermal stability of polyimide-matrix composite for aero-engines. Journal of Materials Engineering, 2022, 50(7): 102-109.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001238      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/102
Fig.1  PI树脂不同升温速率下的DSC曲线
Fig.2  PI树脂固化起始温度Ti(a)、固化峰温度Tp(b)和固化终止温度Tf(c)
β/(K·min-1) Ti/K Tp/K Tf/K Tp-1/(103·K-1) -ln(β/Tp2) lnβ
0(by extrapolation) 600.6 618.0 639.5
  2.5 606.8 630.6 654.1 1.5858 16.0714 -3.1781
  5 618.3 647.2 673.5 1.5453 15.4299 -2.4849
10 627.4 663.6 693.6 1.5071 14.7869 -1.7918
15 635.6 674.1 707.2 1.4835 14.4130 -1.3863
20 643.5 680.2 716.8 1.4702 14.1434 -1.0986
Table 1  PI树脂的固化反应数据
Fig.3  线性拟合曲线
(a); (b)lnβ-1/Tp
Fig.4  PI树脂固化度-温度-时间的模拟3D曲面
Fig.5  PI树脂等固化反应程度时间-温度模拟曲线
Curing degree/% Curing time/min
320 ℃ 330 ℃ 350 ℃ 360 ℃ 380 ℃
80 77 48 20 14 6
95 136 85 35 24 11
99 198 124 51 35 15
100 690 433 178 121 54
Table 2  PI树脂不同温度时固化所需时间
Fig.6  PI树脂的流变曲线
Fig.7  PI复合材料的浸入法超声波检测图
(a)厚度2 mm; (b)厚度4 mm
Fig.8  PI复合材料外涵机匣典型件
Fig.9  PI复合材料截面光学照片
(a)0°;(b)45°;(c)-45°;(d)90°
Fig.10  PI复合材料的热老化失重曲线
Fig.11  PI复合材料400 ℃热老化前后的接触法超声波检测
(a)热老化前,预置缺陷区域;(b)热老化前,正常区域;(c)热老化后,正常区域;(d)热老化后,预置缺陷边缘区域
Property 90° tensile strength/ MPa 90° tensile modulus/ GPa Short-beam shear strength/ MPa
Before ageing 79.1 9.12 105
After ageing 72.3 9.20 104
Retention/% 91 101 99
Table 3  EC-380A复合材料400 ℃热老化前后的性能
1 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004.
1 CHEN X B . Polymer-matrix composite handbook[M]. Beijing: Chemical Industry Press, 2004.
2 包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32 (6): 1- 13.
2 BAO J W , CHEN X B . Advance in high temperature polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 1- 13.
3 杨士勇. 耐高温聚酰亚胺树脂研究[J]. 高分子通报, 2014, (12): 23- 28.
3 YANG S Y . Progress in high temperature polyimide resin[J]. Polymer Bulletin, 2014, (12): 23- 28.
4 WILSON D . PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20 (5): 405- 416.
doi: 10.1002/pi.4980200505
5 XIE W , PAN W P , CHUANG K C . Thermal characterization of PMR polyimides[J]. Thermochimica Acta, 2001, 367/368, 143- 153.
doi: 10.1016/S0040-6031(00)00698-5
6 HUTAPEA P , YUAN F G . The effect of thermal aging on the Mode-Ⅰ interlaminar fracture behavior of a high-temperature IM7/LaRC-RP46 composite[J]. Composites Science and Technology, 1999, 59 (8): 1271- 1286.
doi: 10.1016/S0266-3538(98)00164-X
7 LIU Y , XIAO Y , SUN X , et al. Microwave irradiation of nadic-end-capped polyimide resin(RP-46) and glass-graphite-RP-46 composites: cure and process studies[J]. Journal of Applied Polymer Science, 1999, 73 (12): 2391- 2411.
doi: 10.1002/(SICI)1097-4628(19990919)73:12<2391::AID-APP9>3.0.CO;2-P
8 PATER R H , CURTO P A . Advanced materials for space applications[J]. Acta Astronautica, 2007, 61 (11/12): 1121- 1129.
9 GAO S Q , WANG X C , HU A J , et al. Preparation and properties of PMR-Ⅱ polyimide/chopped quartz fibre composites[J]. High Performance Polymers, 2000, 12 (3): 405- 417.
doi: 10.1088/0954-0083/12/3/304
10 WILSON D . Recent advances in polyimide composites[J]. High Performance Polymers, 1993, 5 (2): 77- 95.
doi: 10.1088/0954-0083/5/2/001
11 HERGENROTHER P M , SMITH J G . Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides[J]. Polymer, 1994, 35 (22): 4857- 4864.
doi: 10.1016/0032-3861(94)90744-7
12 CANO R J , JENSEN B J . Effect of molecular weight on processing and adhesive properties of the phenylethynyl-terminated polyimide LARC(TM)-PETI-5[J]. The Journal of Adhesion, 1997, 60 (1/4): 113- 123.
13 CONNELL J W , SMITH J G , CRISS J M . High temperature transfer molding resins: laminate properties of PETI-298 and PETT-330[J]. High Performance Polymers, 2003, 15 (4): 375- 394.
doi: 10.1177/09540083030154001
14 YOKOTA R , YAMAMOTO S , YANO S , et al. Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature[J]. High Performance Polymers, 2001, 13 (2): S61- S72.
doi: 10.1088/0954-0083/13/2/306
15 OGASAWARA T , ISHIKAWA T , YOKOTA R , et al. Processing and properties of carbon fiber reinforced triple-A polyimide (Tri-A PI) matrix composites[J]. Advanced Composite Materials, 2003, 11 (3): 277- 286.
16 OGASAWARA T , ISHIDA Y , YOKOTA R , et al. Processing and properties of carbon fiber/triple-A polyimide composites fabricated from imide oligomer dry prepreg[J]. Composites Part: A, 2007, 38 (5): 1296- 1303.
doi: 10.1016/j.compositesa.2006.11.007
17 LI Y , OBANDO N , TSCHEN F , et al. Thermal analysis of phenylethynyl end-capped fluorinated imide oligomer AFR-PEPA-4[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85 (1): 125- 129.
18 LINCOLN J E , MORGAN R J , CURLISS D B . Effect of matrix chemical structure on the thermo-oxidative stability of addition cure poly(imide siloxane) composites[J]. Polymer Composites, 2008, 29 (6): 585- 596.
doi: 10.1002/pc.20428
[1] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[2] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[3] 顾善群, 张代军, 刘燕峰, 邹齐, 陈祥宝, 李军, 付善龙. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125.
[4] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[5] 张明艳, 高升, 吴子剑, 崔宏玉, 高岩. 共聚低热膨胀聚酰亚胺薄膜的制备与表征[J]. 材料工程, 2019, 47(5): 153-158.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 杨士勇, 陈祥宝. 黏度可控化制备BPDA-PDA型聚酰亚胺及表征[J]. 材料工程, 2019, 47(11): 100-106.
[7] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[8] 李晓敏, 吴菊英, 唐昶宇, 袁萍, 邢涛, 张凯, 梅军, 黄渝鸿. B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究[J]. 材料工程, 2018, 46(3): 48-54.
[9] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[10] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[11] 李春燕, 尹金锋, 王铮, 寇生中, 赵燕春. Er对ZrCuNiAl非晶合金结构、力学性能、热稳定性及非晶形成能力的影响[J]. 材料工程, 2018, 46(1): 1-7.
[12] 李娜, 马兆昆, 陈铭, 宋怀河, 李昂, 贾月荣. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45(9): 31-37.
[13] 王云飞, 张朋, 刘刚, 肇研, 包建文. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9): 121-128.
[14] 王灵侠, 马晓燕, 金龙, 陈芳, 吴涛. 碱性EPb-POSS增韧E-51/DDS环氧树脂的研究[J]. 材料工程, 2016, 44(11): 33-38.
[15] 杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44(11): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn