Resin matrix composites have many advantages such as high specific strength and modulus, good fatigue performance, corrosion resistance, and have become the application and development trend of aero engine components under 400 ℃. Foreign research on resin matrix composites for aero engine started earlier, which have been applied in fan blades, fan casings, outer ducts, nacelles and other components of multi-engine, and developed towards the trend of better structure, higher material performance, lower manufacturing cost and higher automation degree. The development foundation of domestic resin matrix composites is good, but compared with foreign countries the application proportion of resin matrix composites in engines in not high. It is necessary to furthur improve the technical level of design, materials, manufacturing, experiment and engineering ability. In this paper, foreign development status was discussed in the field of structures, materials and processing methods of aero engine composite components, the development trend was analyzed and corresponding suggestions were given, from the aspects of building composites system for aero engine, strengthening application research and design guide, promoting the transformation of pre-research achievements and application of automation technology.
Compared with high strength structural steel, it has lower density, lighter mass and compact structure. However, it is difficult to process aluminum (titanium) alloy casing with a diameter greater than 2 m
XING L Y , FENG Z H , BAO J W , et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37 (11): 2700- 2706.
LIU D X . One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
4
PATER R H , CURTO P A . Advanced materials for space applications[J]. Acta Astronautica, 2007, 61 (11/12): 1121- 1129.
5
ROBERTSON F C . Resin transfer moulding of aerospace resins-a review[J]. Polymer International, 2010, 20 (5): 417- 429.
LIANG C H , LI X X . Application and development trend of advanced materials for fighter engine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 32- 36.
CHEN W . Status and development trends of polymer matrix composites on advanced aeroengine[J]. Aeronautical Manufacturing Technology, 2016, (5): 68- 72.
SHEN E M , WANG Z H , TENG B Q , et al. Advanced polymer matrix composites for high bypass ratio engines application[J]. Aeronautical Manufacturing Technology, 2011, (17): 56- 61.
doi: 10.3969/j.issn.1671-833X.2011.17.009
WANG X L , LIU Z Z , JI S Y , et al. Research progress in advanced composite fan blades for commercial aero-engines[J]. Advanced Materials Industry, 2010, (11): 36- 41.
doi: 10.3969/j.issn.1008-892X.2010.11.008
LIU Q , ZHAO L , HUANG F . Present conditions and development of composite fan blades of high bypass ratio commercial jet engines[J]. Aeronautical Manufacturing Technology, 2014, (15): 58- 62.
doi: 10.3969/j.issn.1671-833X.2014.15.009
14
ZUEV V V . The mechanisms and mechanics of the toughening of epoxy polymers modified with fullerene C60[J]. Polymer Engineering & Science, 2012, 52 (12): 2518- 2522.
15
YIN J , LI G , HE W , et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards[J]. Journal of Analytical & Applied Pyrolysis, 2011, 92 (1): 131- 136.
16
DAY R J , LOVELL P A , WAZZAN A A . Thermal and mechanical characterization of epoxy resins toughened using preformed particles[J]. Polymer Intemational, 2001, 50 (8): 849- 867.
doi: 10.1002/pi.690
GUAN L X , LI J L , JIAO Y N , et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35 (4): 748- 759.
19
YANG Y , CHEN G , LIEW K M . Preparation and analysis of a flexible curing agent for epoxy resin[J]. Journal of Applied Polymer Science, 2009, 114 (5): 2706- 2710.
doi: 10.1002/app.30893
20
DU X S , ZHOU H L Z , SUN W F , et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fiber/epoxy composite laminates[J]. Composites Science and Technology, 2017, (140): 123- 133.
21
ZHANG Y , ZHANG J H , ZHENG Y . The thermal expansion behaviour of carbon fiber-reinforced resin mineral composite postcured under various temperatures[J]. Journal of Reinforced Plastics and Composites, 2017, 36 (7): 505- 518.
doi: 10.1177/0731684416685167
22
PAPAPETROU V S , TAMIJANI A Y , KIM D . Preliminary wing study of general aviation aircraft with stitched composite panels[J]. Journal of Aircraft, 2017, 54 (2): 704- 715.
doi: 10.2514/1.C033884
23
JIN F L , PARK S J . Thermal and rheological properties of vegetable oil-based epoxy resins cured with thermally latent initiator[J]. Journal of Industrial & Engineering Chemistry, 2007, 13 (5): 808- 814.
24
JIN F L , PARK S J . Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils[J]. Polymer International, 2008, 57 (4): 577- 583.
doi: 10.1002/pi.2280
CHEN J P , LI Y , LIU W P , et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica, 2019, 36 (4): 784- 794.
MA X Q , SU Z T . Application progress of polymer matrix composites in civil turbofan aeroengine[J]. Journal of Materials Engineering, 2020, 48 (10): 48- 59.
doi: 10.11868/j.issn.1001-4381.2020.000440
JI S Y , WANG J , XING J , et al. Research development of containment casing of aeroengine fan abroad[J]. Aeronautical Manufacturing Technology, 2010, (14): 44- 48.
doi: 10.3969/j.issn.1671-833X.2010.14.006
SHEN E M , WANG Z H , ZHAO F F , et al. Application and development of material for aeroengine fan case[J]. Aeronautical Manufacturing Technology, 2013, (13): 92- 95.
doi: 10.3969/j.issn.1671-833X.2013.13.017
33
刘璐璐. 二维三轴编织带缠绕碳纤维复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2014.
33
LIU L L. Research on the containment of 2D carbon fiber triaxial braided tape wound composite casing[D]. Hangzhou: Zhejiang University, 2014.
LIU L L , ZHAO Z H , CHEN W , et al. Ballistic impact behavior of aero-engine composite casing[J]. Journal of Aerospace Power, 2018, 33 (1): 30- 38.
35
LIU L L , XUAN H J , HE Z K , et al. Containment capability of 2D triaxial braided tape wound composite casing for aero-engine[J]. Polymer Composites, 2016, 57 (5/6): 2227- 2242.
36
LACH A , KATUNIN A , GNATOWSKI A . Design of the composite casing of microstrip antenna for the aerospace satellite[J]. Aircraft Engineering and Aerospace Technology, 2018, 90 (5): 788- 805.
doi: 10.1108/AEAT-11-2016-0226
37
YU F , HE Y T , AN T , et al. Effect of hygrothermal condition on buckling and post-buckling performance of CCF300/5228A aero composite stiffened panel under axial compression[J]. Journal of Reinforced Plastics and Composites, 2015, 34 (12): 989- 999.
doi: 10.1177/0731684415585381
38
KAVITHA , REVATHI A , RAO S , et al. Characterization of shape memory behaviour of CTBN-epoxy resin system[J]. Journal of Polymer Research, 2012, 19 (6): 1- 7.
39
YU Y , ZHANG Z , GAN W , et al. Effect of polyethersulfone on the mechanical and rheological properties of polyetherimide-modified epoxy systems[J]. Industrial & Engineering Chemistry Research, 2003, 42 (14): 3250- 3256.
40
SLOAN J. LEAP backlog spurs composites production expansion[EB/OL]. (2016-02-24)[2021-11-20]. https://www.compositesworld.com/articles/leap-backlog-spurs-composites-production-expansion.
41
VARLEY R J . Toughening of epoxy resin systems using low-viscosity additives[J]. Polymer International, 2004, 53 (1): 78- 84.
doi: 10.1002/pi.1321
42
TAKEDA S , KAKIUCHI H . Toughening bismaleimide resins by reactive liquid rubbers[J]. Journal of Applied Polymer Science, 2010, 35 (5): 1351- 1366.
ZHAO K , LIU P F , LIU B L , et al. Development and application of by-pass duct casing made of resin matrix composite[J]. Composites Science and Engineering, 2020, (4): 112- 116.
BAO J W , CHEN X B . Advance in high temperature polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 1- 13.
JIANG S D , LUO C Y , ZHANG P , et al. Integration manufacturing and testing verification for RTMable carbon fiber/polyimide composite rudder[J]. Acta Materiae Compositae Sinica, 2020, 37 (9): 2152- 2162.
WANG Y F , ZHANG P , LIU G , et al. Progress in research on polyimide composite bushings for aeroengine[J]. Journal of Materials Engineering, 2016, 44 (9): 121- 128.
47
HUTAPREA P , YUAN F G . The effect of thermal aging on the Mode- Ⅰ interlaminar fracture behavior of a high-temperature IM7/LaRC-RP46 composite[J]. Composites Science and Technology, 1999, 59 (8): 1271- 1286.
48
LIU Y , XIAO Y , SUN X , et al. Microwave irradiation of nadic-end-capped polyimide resin(RP-46)and glass-graphite-RP-46 composites: cure and process studies[J]. Journal of Applied Polymer Science, 1999, 73 (12): 2391- 2411.
49
GAO S Q , WANG X C , HU A J , et al. Preparation and properties of PMR-Ⅱ polyimide/chopped quartz fibre composites[J]. High Performance Polymers, 2000, 12 (3): 405- 417.
50
SELLADURAI M , SAROJADEVI M . Synthesis and properties of modified PMR-matrix resin type polyimide and composite with non-carcinogenic diamine[J]. High Performance Polymers, 2016, 28 (2): 162- 172.
51
DESAULTY M. The SNECMA M88 engine family[EB/OL]. (2012-08-22)[2021-11-20]. https://doi.org/10.2514/6.2000-3462.
52
WILSON D . PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20 (5): 405- 416.
53
WILSON D . Recent advances in polyimide composites[J]. High Performance Polymers, 1993, 5 (2): 77- 95.
54
CONNELL J W , SMITH J G , CRISS J M . High temperature transfer molding resins: laminate properties of PETI-298 and PETT-330[J]. High Performance Polymers, 2003, 15 (4): 375- 394.
55
YOKOTA R , YAMAMOTO S , YANO S , et al. Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature[J]. High Performance Polymers, 2001, 13 (2): S61- S72.
56
CHENG S , HAN J , WANG X , et al. Oxidatively stable thermosets derived from thermal copolymerization of acetylene-terminated imide monomer with an acetylenic monomer containing carborane[J]. Polymer, 2017, 115, 96- 105.
57
XING T , ZHANG K . Syntheses of novel soluble carborane polyimides with ultrahigh thermal stability[J]. Polymer International, 2015, 64 (12): 1715- 1721.
58
GOLUBEVA O Y , YUDIN V E , DIDENKO A L , et al. Nanocomposites based on polyimide thermoplastics and magnesium silicate nanoparticles with montmorillonite structure[J]. Russian Journal of Applied Chemistry, 2007, 80 (1): 106- 109.
59
HU Z , LI S , ZHANG C . Synthesis and properties of polyamide-imides containing fluorenyl cardo structure[J]. Journal of Applied Polymer Science, 2007, 106 (4): 2494- 2501.
60
WEN P , KIM Y , CHUN H , et al. Syntheses and characterizations of cardo polyimides based on new spirobifluorene diamine monomer[J]. Materials Chemistry and Physics, 2013, 139 (2/3): 923- 930.
61
LIU J , CHEN G , MUSHTAQ N , et al. Synthesis of organosoluble and light-colored cardo polyimides via aromatic nucleophilic substitution polymerization[J]. Polymers for Advanced Technologies, 2015, 26 (12): 1519- 1527.
62
陈祥宝. 高性能树脂基体[M]. 北京: 化学工业出版社, 1999.
62
CHEN X B . High-performance resin matrix[M]. Beijing: Chemical Industry Press, 1999.
CHEN J S , ZUO H J , GAO Q F , et al. Preparation and characterization of PMR-type polyimide resin terminated with phenylethynyl group[J]. Journal of Aeronautical Materials, 2007, 27 (5): 66- 70.
WANG Y L , LIU T S , LIU D , et al. Research progress of aeroengine composite stator blades[J]. Fiber Reinforced Plastics/Composites, 2018, (12): 96- 101.
66
BERENBERG B. Resin transfer molding and preforms for jet engine stators[EB/OL]. (2004-07-01)[2021-11-20]. https://www.compositesworld.com/articles/resin-transfer-molding-and-preforms-for-jet-engine-stators.
67
BLACK S. Nacelle manufacturers optimize hand layup and consider closed molding methods[EB/OL](2004-05-01)[2021-11-20]. https://www.compositesworld.com/articles/nacelle-manufacturers-optimize-hand-layup-and-consider-closed-molding-methods.
BAO J W , ZHONG X Y , ZHANG D J , et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering, 2020, 48 (8): 33- 48.
WANG L , XIONG S , ZHAO Y , et al. Impact resistance of T800 carbon fiber composite materials[J]. Journal of Aeronautical Materials, 2018, 38 (5): 147- 152.
SUI X D , XIONG S , ZHU L , et al. Hygrothermal properties of domestic T800 carbon fiber/epoxy composites[J]. Journal of Aeronautical Materials, 2019, 39 (3): 88- 93.
72
LI S M , CHEN Z X , WANG Y , et al. Quasi-static compression and hygrothermal stability of BMI/CE co-cured composite lattice cylindrical shell[J]. Composite Structures, 2021, (257): 1- 8.