Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 49-60    DOI: 10.11868/j.issn.1001-4381.2021.001242
  综述 本期目录 | 过刊浏览 | 高级检索 |
航空发动机用树脂基复合材料应用进展与发展趋势
李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝()
中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
Application progress and development trend of resin matrix composites for aero engine
Jun LI, Yanfeng LIU, Hongjiang NI, Daijun ZHANG, Xiangbao CHEN()
National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(13578 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

树脂基复合材料具有比强度和比模量高、疲劳性能和耐腐蚀性能好等优点, 已经成为航空发动机冷端部件的应用和发展趋势。国外航空发动机用树脂基复合材料研究起步较早, 已经在多型发动机的风扇叶片、风扇机匣、外涵机匣、短舱等部件得到成熟应用, 并朝着结构形式更优、材料性能更好、制造成本更低、自动化程度更高的方向发展。国内树脂基复合材料发展基础良好, 但与国外相比在发动机上应用比例不高, 需要进一步提升设计、材料、制造、实验技术水平及工程化能力。本文重点论述国外航空发动机复合材料构件的结构、材料和工艺发展现状, 分析发展趋势, 从建立航空发动机用复合材料体系、加强应用研究和设计牵引、推进预研成果转化和自动化技术应用等方面提出相关建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李军
刘燕峰
倪洪江
张代军
陈祥宝
关键词 航空发动机树脂基复合材料成型技术发展趋势工程应用    
Abstract

Resin matrix composites have many advantages such as high specific strength and modulus, good fatigue performance, corrosion resistance, and have become the application and development trend of aero engine components under 400 ℃. Foreign research on resin matrix composites for aero engine started earlier, which have been applied in fan blades, fan casings, outer ducts, nacelles and other components of multi-engine, and developed towards the trend of better structure, higher material performance, lower manufacturing cost and higher automation degree. The development foundation of domestic resin matrix composites is good, but compared with foreign countries the application proportion of resin matrix composites in engines in not high. It is necessary to furthur improve the technical level of design, materials, manufacturing, experiment and engineering ability. In this paper, foreign development status was discussed in the field of structures, materials and processing methods of aero engine composite components, the development trend was analyzed and corresponding suggestions were given, from the aspects of building composites system for aero engine, strengthening application research and design guide, promoting the transformation of pre-research achievements and application of automation technology.

Key wordsaero engine    resin matrix composites    processing technology    development trend    engineering application
收稿日期: 2021-12-28      出版日期: 2022-06-20
中图分类号:  V258  
通讯作者: 陈祥宝     E-mail: xiangbao.chen@biam.ac.cn
作者简介: 陈祥宝(1956—),男,研究员,博士,主要从事先进树脂基复合材料研制及应用研究,联系地址:北京市81信箱3分箱(100095),E-mail: xiangbao.chen@biam.ac.cn
引用本文:   
李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
Jun LI, Yanfeng LIU, Hongjiang NI, Daijun ZHANG, Xiangbao CHEN. Application progress and development trend of resin matrix composites for aero engine. Journal of Materials Engineering, 2022, 50(6): 49-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001242      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/49
Component Engine model Company Material
Fan rotor blade GE90 GE IM7/8551-7
LEAP-X SNECMA IM7/PR520
UltraFan Rolls-Royce IM7/M91
Outlet guide vane F119 P&W CFRP/AFR700B
PW4084, PW4168 P&W CFRP/PR500
Fan casing CF6-80C2, GE90 GE Kevlar/Epoxy
GEnx GE T700/PR520
Outer duct F404, F414 GE T300/PMR-15
M88-2 SNECMA T300/PMR-15
Table 1  树脂基复合材料在航空发动机上的主要应用[6-9]
Fig.1  GEnx发动机及其复合材料构件[11]
Fig.2  3D机织/RTM成型复合材料风扇叶片[25]
(a)成型模具;(b)风扇叶片
Fig.3  “超扇”发动机复合材料风扇叶片[29]
(a)自动铺放工艺;(b)风扇叶片
Engine model Company Material Molding method Blade number Diameter/m Service time
RB211 Rolls-Royce Ti-6Al-4V forming/diffusion bonding 22 1.88 In 1984
GE90 GE IM7/8551-7 Hand layering/compression moulding 22 3.12 In 1995
GEnx GE IM7/8551-7 Hand layering/compression moulding 18 2.8 In 2011
LEAP-X SNECMA IM7/PR520 3D woven/RTM molding 18 1.8 In 2016
UltraFan Rolls-Royce IM7/M91 Automatic placement/autoclave forming 18 3.56 Expected in 2030
Table 2  国外典型发动机风扇叶片材料及成型技术[12-13]
Fan casing structure Engine model Characteristics
High strength structural steel Trent500, CFM56-5B, CF6-6 It has the advantages of good strength and toughness, good protection effect, and is widely used in early engines, but its density and mass are large
Aluminum alloy/titanium alloy structure CFM56-7B(Al), Trent900 (Ti), Trent1000(Ti), TrentXWB(Ti) Compared with high strength structural steel, it has lower density, lighter mass and compact structure. However, it is difficult to process aluminum (titanium) alloy casing with a diameter greater than 2 m
Fiber winding reinforced structure CF6-80C2, Trent700, Trent800, GE90, PW2000, PW4000, PW4084 Low cost, light mass and strong tolerance
Fully composite structure GEnx, LEAP-X It is the future development direction to use two dimensional three direction weaving or three dimensional weaving, which has lighter weight
Table 3  国外发动机风扇机匣选材及使用情况[30-32]
Fig.4  LEAP-X发动机复合材料风扇包容机匣[40]
(a)机织物制备;(b)机匣无损检测
Fig.5  “超扇”发动机风扇包容机匣[29]
(a)自动铺放工艺;(b)风扇机匣
Generation Norbornene terminated type Phenylethylic anhydride terminated type Thermal resistance/℃
1 PMR-15 PETI-5, PETI-298 280-315
2 PMR-Ⅱ PETI-330, PETI-375, TriA-PI 316-370
3 DMBZ-15, AFR-700B AFR-PE-4 371-426
4 P2SI900HT >426
Table 4  国外热固性聚酰亚胺树脂基体发展现状[44]
Fig.6  M88-2发动机及复合材料外涵机匣[51]
(a)M88-2发动机;(b)外涵机匣
Fig.7  AE3007发动机出口导流叶片[66]
(a)叶片下料;(b)RTM成型单个叶片;(c)三联体叶片组合工装;(d)粘接后的三联体叶片
Fig.8  反推装置及叶栅结构[67]
(a)反推装置;(b)复合材料叶栅
1 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004.
1 CHEN X B . Polymer matrix composites handbook[M]. Beijing: Chemical Industry Press, 2004.
2 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37 (11): 2700- 2706.
2 XING L Y , FENG Z H , BAO J W , et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37 (11): 2700- 2706.
3 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
3 LIU D X . One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
4 PATER R H , CURTO P A . Advanced materials for space applications[J]. Acta Astronautica, 2007, 61 (11/12): 1121- 1129.
5 ROBERTSON F C . Resin transfer moulding of aerospace resins-a review[J]. Polymer International, 2010, 20 (5): 417- 429.
6 梁春华, 李晓欣. 先进材料在战斗机发动机上的应用与研究趋势[J]. 航空材料学报, 2012, 32 (6): 32- 36.
6 LIANG C H , LI X X . Application and development trend of advanced materials for fighter engine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 32- 36.
7 陈巍. 先进航空发动机树脂基复合材料技术现状与发展趋势[J]. 航空制造技术, 2016, (5): 68- 72.
7 CHEN W . Status and development trends of polymer matrix composites on advanced aeroengine[J]. Aeronautical Manufacturing Technology, 2016, (5): 68- 72.
8 沈尔明, 王志宏, 滕佰秋, 等. 先进树脂基复合材料在大涵道比发动机上的应用[J]. 航空制造技术, 2011, (17): 56- 61.
doi: 10.3969/j.issn.1671-833X.2011.17.009
8 SHEN E M , WANG Z H , TENG B Q , et al. Advanced polymer matrix composites for high bypass ratio engines application[J]. Aeronautical Manufacturing Technology, 2011, (17): 56- 61.
doi: 10.3969/j.issn.1671-833X.2011.17.009
9 陈亚莉. 复合材料在民用航空发动机上的应用[J]. 国际航空, 2012, (10): 54- 55.
9 CHEN Y L . Composites application is becoming popular on civil aero-engine[J]. International Aviation, 2012, (10): 54- 55.
10 胡燕萍. 碳纤维复合材料为航空发动机减重[J]. 国际航空, 2016, (5): 62- 63.
10 HU Y P . Carbon fiber composites reducing the weight of aero engines[J]. International Aviation, 2016, (5): 62- 63.
11 张小伟. GE的复合材料发展战略[J]. 国际航空, 2013, (10): 54- 56.
11 ZHANG X W . GE's composites research strategy[J]. International Aviation, 2013, (10): 54- 56.
12 王晓亮, 刘志真, 纪双英, 等. 商用航空发动机先进复合材料风扇叶片研究进展[J]. 新材料产业, 2010, (11): 36- 41.
doi: 10.3969/j.issn.1008-892X.2010.11.008
12 WANG X L , LIU Z Z , JI S Y , et al. Research progress in advanced composite fan blades for commercial aero-engines[J]. Advanced Materials Industry, 2010, (11): 36- 41.
doi: 10.3969/j.issn.1008-892X.2010.11.008
13 刘强, 赵龙, 黄峰. 商用大涵道比发动机复合材料风扇叶片应用现状与展望[J]. 航空制造技术, 2014, (15): 58- 62.
doi: 10.3969/j.issn.1671-833X.2014.15.009
13 LIU Q , ZHAO L , HUANG F . Present conditions and development of composite fan blades of high bypass ratio commercial jet engines[J]. Aeronautical Manufacturing Technology, 2014, (15): 58- 62.
doi: 10.3969/j.issn.1671-833X.2014.15.009
14 ZUEV V V . The mechanisms and mechanics of the toughening of epoxy polymers modified with fullerene C60[J]. Polymer Engineering & Science, 2012, 52 (12): 2518- 2522.
15 YIN J , LI G , HE W , et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards[J]. Journal of Analytical & Applied Pyrolysis, 2011, 92 (1): 131- 136.
16 DAY R J , LOVELL P A , WAZZAN A A . Thermal and mechanical characterization of epoxy resins toughened using preformed particles[J]. Polymer Intemational, 2001, 50 (8): 849- 867.
doi: 10.1002/pi.690
17 BECU L , MAAZOUZ A , SAUTEREAU H , et a1 . Fracture behavior of epoxy polymers modified with cole-shell rubber particles[J]. Journal of Applied Polymer Science, 1997, 65 (12): 2419- 2431.
doi: 10.1002/(SICI)1097-4628(19970919)65:12<2419::AID-APP14>3.0.CO;2-W
18 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35 (4): 748- 759.
18 GUAN L X , LI J L , JIAO Y N , et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35 (4): 748- 759.
19 YANG Y , CHEN G , LIEW K M . Preparation and analysis of a flexible curing agent for epoxy resin[J]. Journal of Applied Polymer Science, 2009, 114 (5): 2706- 2710.
doi: 10.1002/app.30893
20 DU X S , ZHOU H L Z , SUN W F , et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fiber/epoxy composite laminates[J]. Composites Science and Technology, 2017, (140): 123- 133.
21 ZHANG Y , ZHANG J H , ZHENG Y . The thermal expansion behaviour of carbon fiber-reinforced resin mineral composite postcured under various temperatures[J]. Journal of Reinforced Plastics and Composites, 2017, 36 (7): 505- 518.
doi: 10.1177/0731684416685167
22 PAPAPETROU V S , TAMIJANI A Y , KIM D . Preliminary wing study of general aviation aircraft with stitched composite panels[J]. Journal of Aircraft, 2017, 54 (2): 704- 715.
doi: 10.2514/1.C033884
23 JIN F L , PARK S J . Thermal and rheological properties of vegetable oil-based epoxy resins cured with thermally latent initiator[J]. Journal of Industrial & Engineering Chemistry, 2007, 13 (5): 808- 814.
24 JIN F L , PARK S J . Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils[J]. Polymer International, 2008, 57 (4): 577- 583.
doi: 10.1002/pi.2280
25 刘强, 赵龙, 黄峰, 等. 机织复合材料风扇叶片成型技术研究[J]. 纤维复合材料, 2019, (4): 68- 72.
25 LIU Q , ZHAO L , HUANG F , et al. Molding process of woven composite fan blades[J]. Fiber Composites, 2019, (4): 68- 72.
26 王翔宇. 罗罗公司超扇发动机发展态势分析[J]. 航空动力, 2018, (5): 21- 25.
26 WANG X Y . The development and the future of UltraFan[J]. Aerospace Power, 2018, (5): 21- 25.
27 邢丽英. 先进树脂基复合材料自动化制造技术[M]. 北京: 航空工业出版社, 2014.
27 XING L Y . Automated manufacturing technology for advanced resin-based composite materials[M]. Beijing: Aviation Industry Press, 2014.
28 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36 (4): 784- 794.
28 CHEN J P , LI Y , LIU W P , et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica, 2019, 36 (4): 784- 794.
29 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48 (10): 48- 59.
doi: 10.11868/j.issn.1001-4381.2020.000440
29 MA X Q , SU Z T . Application progress of polymer matrix composites in civil turbofan aeroengine[J]. Journal of Materials Engineering, 2020, 48 (10): 48- 59.
doi: 10.11868/j.issn.1001-4381.2020.000440
30 宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010, 25 (8): 1860- 1870.
30 XUAN H J , LU X , HONG W R , et al. Review of aero-engine case containment research[J]. Journal of Aerospace Power, 2010, 25 (8): 1860- 1870.
31 纪双英, 王晋, 邢军, 等. 国外航空发动机风扇包容机匣研究进展[J]. 航空制造技术, 2010, (14): 44- 48.
doi: 10.3969/j.issn.1671-833X.2010.14.006
31 JI S Y , WANG J , XING J , et al. Research development of containment casing of aeroengine fan abroad[J]. Aeronautical Manufacturing Technology, 2010, (14): 44- 48.
doi: 10.3969/j.issn.1671-833X.2010.14.006
32 沈尔明, 王志宏, 赵凤飞, 等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013, (13): 92- 95.
doi: 10.3969/j.issn.1671-833X.2013.13.017
32 SHEN E M , WANG Z H , ZHAO F F , et al. Application and development of material for aeroengine fan case[J]. Aeronautical Manufacturing Technology, 2013, (13): 92- 95.
doi: 10.3969/j.issn.1671-833X.2013.13.017
33 刘璐璐. 二维三轴编织带缠绕碳纤维复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2014.
33 LIU L L. Research on the containment of 2D carbon fiber triaxial braided tape wound composite casing[D]. Hangzhou: Zhejiang University, 2014.
34 刘璐璐, 赵振华, 陈伟, 等. 航空发动机复合材料机匣弹道冲击特性[J]. 航空动力学报, 2018, 33 (1): 30- 38.
34 LIU L L , ZHAO Z H , CHEN W , et al. Ballistic impact behavior of aero-engine composite casing[J]. Journal of Aerospace Power, 2018, 33 (1): 30- 38.
35 LIU L L , XUAN H J , HE Z K , et al. Containment capability of 2D triaxial braided tape wound composite casing for aero-engine[J]. Polymer Composites, 2016, 57 (5/6): 2227- 2242.
36 LACH A , KATUNIN A , GNATOWSKI A . Design of the composite casing of microstrip antenna for the aerospace satellite[J]. Aircraft Engineering and Aerospace Technology, 2018, 90 (5): 788- 805.
doi: 10.1108/AEAT-11-2016-0226
37 YU F , HE Y T , AN T , et al. Effect of hygrothermal condition on buckling and post-buckling performance of CCF300/5228A aero composite stiffened panel under axial compression[J]. Journal of Reinforced Plastics and Composites, 2015, 34 (12): 989- 999.
doi: 10.1177/0731684415585381
38 KAVITHA , REVATHI A , RAO S , et al. Characterization of shape memory behaviour of CTBN-epoxy resin system[J]. Journal of Polymer Research, 2012, 19 (6): 1- 7.
39 YU Y , ZHANG Z , GAN W , et al. Effect of polyethersulfone on the mechanical and rheological properties of polyetherimide-modified epoxy systems[J]. Industrial & Engineering Chemistry Research, 2003, 42 (14): 3250- 3256.
40 SLOAN J. LEAP backlog spurs composites production expansion[EB/OL]. (2016-02-24)[2021-11-20]. https://www.compositesworld.com/articles/leap-backlog-spurs-composites-production-expansion.
41 VARLEY R J . Toughening of epoxy resin systems using low-viscosity additives[J]. Polymer International, 2004, 53 (1): 78- 84.
doi: 10.1002/pi.1321
42 TAKEDA S , KAKIUCHI H . Toughening bismaleimide resins by reactive liquid rubbers[J]. Journal of Applied Polymer Science, 2010, 35 (5): 1351- 1366.
43 赵凯, 刘鹏飞, 刘波浪, 等. 树脂基复合材料外涵道机匣的研制与应用[J]. 复合材料科学与工程, 2020, (4): 112- 116.
43 ZHAO K , LIU P F , LIU B L , et al. Development and application of by-pass duct casing made of resin matrix composite[J]. Composites Science and Engineering, 2020, (4): 112- 116.
44 包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32 (6): 1- 13.
44 BAO J W , CHEN X B . Advance in high temperature polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 1- 13.
45 江晟达, 罗楚养, 张朋, 等. 基于RTM技术的碳纤维/聚酰亚胺复合材料舵面一体化制备与验证[J]. 复合材料学报, 2020, 37 (9): 2152- 2162.
45 JIANG S D , LUO C Y , ZHANG P , et al. Integration manufacturing and testing verification for RTMable carbon fiber/polyimide composite rudder[J]. Acta Materiae Compositae Sinica, 2020, 37 (9): 2152- 2162.
46 王云飞, 张朋, 刘刚, 等. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44 (9): 121- 128.
46 WANG Y F , ZHANG P , LIU G , et al. Progress in research on polyimide composite bushings for aeroengine[J]. Journal of Materials Engineering, 2016, 44 (9): 121- 128.
47 HUTAPREA P , YUAN F G . The effect of thermal aging on the Mode- Ⅰ interlaminar fracture behavior of a high-temperature IM7/LaRC-RP46 composite[J]. Composites Science and Technology, 1999, 59 (8): 1271- 1286.
48 LIU Y , XIAO Y , SUN X , et al. Microwave irradiation of nadic-end-capped polyimide resin(RP-46)and glass-graphite-RP-46 composites: cure and process studies[J]. Journal of Applied Polymer Science, 1999, 73 (12): 2391- 2411.
49 GAO S Q , WANG X C , HU A J , et al. Preparation and properties of PMR-Ⅱ polyimide/chopped quartz fibre composites[J]. High Performance Polymers, 2000, 12 (3): 405- 417.
50 SELLADURAI M , SAROJADEVI M . Synthesis and properties of modified PMR-matrix resin type polyimide and composite with non-carcinogenic diamine[J]. High Performance Polymers, 2016, 28 (2): 162- 172.
51 DESAULTY M. The SNECMA M88 engine family[EB/OL]. (2012-08-22)[2021-11-20]. https://doi.org/10.2514/6.2000-3462.
52 WILSON D . PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20 (5): 405- 416.
53 WILSON D . Recent advances in polyimide composites[J]. High Performance Polymers, 1993, 5 (2): 77- 95.
54 CONNELL J W , SMITH J G , CRISS J M . High temperature transfer molding resins: laminate properties of PETI-298 and PETT-330[J]. High Performance Polymers, 2003, 15 (4): 375- 394.
55 YOKOTA R , YAMAMOTO S , YANO S , et al. Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature[J]. High Performance Polymers, 2001, 13 (2): S61- S72.
56 CHENG S , HAN J , WANG X , et al. Oxidatively stable thermosets derived from thermal copolymerization of acetylene-terminated imide monomer with an acetylenic monomer containing carborane[J]. Polymer, 2017, 115, 96- 105.
57 XING T , ZHANG K . Syntheses of novel soluble carborane polyimides with ultrahigh thermal stability[J]. Polymer International, 2015, 64 (12): 1715- 1721.
58 GOLUBEVA O Y , YUDIN V E , DIDENKO A L , et al. Nanocomposites based on polyimide thermoplastics and magnesium silicate nanoparticles with montmorillonite structure[J]. Russian Journal of Applied Chemistry, 2007, 80 (1): 106- 109.
59 HU Z , LI S , ZHANG C . Synthesis and properties of polyamide-imides containing fluorenyl cardo structure[J]. Journal of Applied Polymer Science, 2007, 106 (4): 2494- 2501.
60 WEN P , KIM Y , CHUN H , et al. Syntheses and characterizations of cardo polyimides based on new spirobifluorene diamine monomer[J]. Materials Chemistry and Physics, 2013, 139 (2/3): 923- 930.
61 LIU J , CHEN G , MUSHTAQ N , et al. Synthesis of organosoluble and light-colored cardo polyimides via aromatic nucleophilic substitution polymerization[J]. Polymers for Advanced Technologies, 2015, 26 (12): 1519- 1527.
62 陈祥宝. 高性能树脂基体[M]. 北京: 化学工业出版社, 1999.
62 CHEN X B . High-performance resin matrix[M]. Beijing: Chemical Industry Press, 1999.
63 赵伟栋, 王磊, 潘玲英, 等. 聚酰亚胺复合材料研究进展[J]. 宇航材料工艺, 2013, 43 (4): 14- 19.
63 ZHAO W D , WANG L , PAN L Y , et al. Advance in polyimide composites[J]. Aerospace Materials and Technology, 2013, 43 (4): 14- 19.
64 陈建升, 左红军, 高群峰, 等. 苯乙炔基封端PMR型聚酰亚胺树脂的制备与性能研究[J]. 航空材料学报, 2007, 27 (5): 66- 70.
64 CHEN J S , ZUO H J , GAO Q F , et al. Preparation and characterization of PMR-type polyimide resin terminated with phenylethynyl group[J]. Journal of Aeronautical Materials, 2007, 27 (5): 66- 70.
65 王燚林, 刘天生, 刘东, 等. 航空发动机复合材料静子叶片研究进展[J]. 玻璃钢/复合材料, 2018, (12): 96- 101.
65 WANG Y L , LIU T S , LIU D , et al. Research progress of aeroengine composite stator blades[J]. Fiber Reinforced Plastics/Composites, 2018, (12): 96- 101.
66 BERENBERG B. Resin transfer molding and preforms for jet engine stators[EB/OL]. (2004-07-01)[2021-11-20]. https://www.compositesworld.com/articles/resin-transfer-molding-and-preforms-for-jet-engine-stators.
67 BLACK S. Nacelle manufacturers optimize hand layup and consider closed molding methods[EB/OL](2004-05-01)[2021-11-20]. https://www.compositesworld.com/articles/nacelle-manufacturers-optimize-hand-layup-and-consider-closed-molding-methods.
68 陈绍杰. 我国先进复合材料技术领域的问题与差距[J]. 高科技纤维与应用, 2015, 40 (3): 1- 7.
68 CHEN S J . The problems and differences of advanced composite technologies field in China[J]. Hi-Tech Fiber & Application, 2015, 40 (3): 1- 7.
69 包建文, 钟翔宇, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48 (8): 33- 48.
69 BAO J W , ZHONG X Y , ZHANG D J , et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering, 2020, 48 (8): 33- 48.
70 王莉, 熊舒, 肇研, 等. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38 (5): 147- 152.
70 WANG L , XIONG S , ZHAO Y , et al. Impact resistance of T800 carbon fiber composite materials[J]. Journal of Aeronautical Materials, 2018, 38 (5): 147- 152.
71 隋晓东, 熊舒, 朱亮, 等. 国产T800级碳纤维/环氧树脂复合材料湿热性能[J]. 航空材料学报, 2019, 39 (3): 88- 93.
71 SUI X D , XIONG S , ZHU L , et al. Hygrothermal properties of domestic T800 carbon fiber/epoxy composites[J]. Journal of Aeronautical Materials, 2019, 39 (3): 88- 93.
72 LI S M , CHEN Z X , WANG Y , et al. Quasi-static compression and hygrothermal stability of BMI/CE co-cured composite lattice cylindrical shell[J]. Composite Structures, 2021, (257): 1- 8.
[1] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[2] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[5] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[6] 高亮, 霍红宇, 周典瑞, 张宝艳, 胡君. 基于动态共价化学树脂及复合材料的研究进展[J]. 材料工程, 2020, 48(11): 68-75.
[7] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[8] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[9] 汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
[10] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46(10): 1-8.
[11] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[12] 马少华, 费昺强, 许良, 回丽. 热氧老化对碳纤维双马树脂基复合材料性能的影响[J]. 材料工程, 2017, 45(12): 50-57.
[13] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
[14] 王云飞, 张朋, 刘刚, 肇研, 包建文. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9): 121-128.
[15] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn