Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 137-149    DOI: 10.11868/j.issn.1001-4381.2021.001254
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
310S耐热钢的高温氧化行为
孟倩1,*(), 李东阳1, 杨江仁2, 刘天增3
1 兰州交通大学 材料科学与工程学院, 兰州 730070
2 兰州理工大学 材料科学与工程学院, 兰州 730050
3 甘肃酒钢集团宏兴钢铁股份有限公司 不锈钢研究所, 甘肃 嘉峪关 735100
High temperature oxidation behavior of 310S heat-resistant steel
Qian MENG1,*(), Dongyang LI1, Jiangren YANG2, Tianzeng LIU3
1 School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Stainless Steel Research Institute of Hongxing Iron & Steel Co., Ltd., Gansu Jiuquan Iron and Steel (Group) Corporation, Jiayuguan 735100, Gansu, China
全文: PDF(1858 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用静态氧化不连续增重法研究晶粒尺寸和成分存在差异的两种310S耐热钢(1#和2#)在800~1100 ℃下的氧化动力学与膜结构,比较两者的氧化性能差异,阐明氧化膜的生长机制和差异形成原因。结果表明:800~900 ℃时氧化膜均由富Si氧化层和富Cr氧化层组成,1#试样的氧化速率更低;1000 ℃时氧化膜中增加了Cr-Mn氧化物层并在1100 ℃时转变为Cr-Mn-Fe氧化层,并且两者的氧化速率接近;整体上2#试样的氧化膜在所有温度下更加致密、平整,黏附性更好,保护能力更强。特别在1100 ℃时,两者的富Cr氧化层和Cr-Mn-Fe氧化层的形态分化较大,2#试样的氧化膜形态更有利于长期的抗氧化性能。总体上,2#试样的抗氧化性优于1#试样。2#试样所具备的更小的平均晶粒尺寸和更均匀的晶粒提高了择优氧化元素的扩散通量并降低氧化膜的非均匀生长,造成两者氧化性能的差异。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟倩
李东阳
杨江仁
刘天增
关键词 310S耐热钢高温氧化氧化动力学氧化膜结构    
Abstract

The oxidation kinetics and film structure of two kinds of 310S heat-resistant steels (1# and 2#) with different grain sizes and composition at 800-1100 ℃ were studied by static oxidation discontinuous mass gain method. The differences of oxidation properties between the two steels were compared, and the growth mechanism of oxide film and the reasons for the differences were clarified. The results show that the oxide film is composed of Si-rich oxide layer and Cr-rich oxide layer and the oxidation rate of sample 1# is lower at 800-900 ℃; Cr-Mn oxide layer is added to the oxide film at 1000 ℃ and is transformed into Cr-Mn-Fe oxide layer at 1100 ℃, and their oxidation rates are similar; on the whole, the oxide film of sample 2# is denser, smoother, more adherent and more protective at all temperatures. Particularly, the spinel layer and the chromium oxide layer of the two are greatly different in the form at 1100 ℃, and the form of the oxide film of sample 2# is more conducive to long-term oxidation resistance. In general, the oxidation resistance of sample 2# is better than that of sample 1#. The smaller average grain size and more uniform grain of sample 2# improve the diffusion flux of preferred oxidation elements and reduce the uneven growth of oxide film, resulting in the differences of oxidation properties between the two.

Key words310S heat-resistant steel    high temperature oxidation    oxidation kinetics    oxide film structure
收稿日期: 2022-01-04      出版日期: 2022-09-20
中图分类号:  TG142.1  
基金资助:甘肃省教育厅创新基金项目(2021A-038);甘肃省自然科学基金项目(20JR10RA226)
通讯作者: 孟倩     E-mail: mymqmm@163.com
作者简介: 孟倩(1979—),女,副教授,博士,主要从事不锈钢材料研究,联系地址:甘肃省兰州市安宁区安宁西路88号兰州交通大学材料科学与工程学院(730070),E-mail: mymqmm@163.com
引用本文:   
孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
Qian MENG, Dongyang LI, Jiangren YANG, Tianzeng LIU. High temperature oxidation behavior of 310S heat-resistant steel. Journal of Materials Engineering, 2022, 50(9): 137-149.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001254      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/137
Sample C N Cr Ni Mn Si Mo Cu Co V P Fe
1# 0.053 0.036 24.22 19.17 0.92 0.570 0.027 0.083 0.154 0.068 0.022 Bal
2# 0.044 0.042 24.98 19.07 0.80 0.462 0.181 0.155 0.145 0.043 0.022 Bal
Table 1  310S耐热钢化学成分(质量分数/%)
Fig.1  1#(a)和2#(b)试样的金相组织
Sample Grain size/grade Average grain size/μm Ra/%
1# 5.0 63.5 9.46
2# 7.0 31.8 3.91
Table 2  310S耐热钢晶粒度评定结果
Fig.2  1#和2#试样在不同温度下单位氧化增重曲线(a)800~900 ℃; (b)1000~1100 ℃
Fig.3  1#和2#试样氧化时间与单位增重平方的关系
(a)800 ℃; (b)900 ℃; (c)1000 ℃; (d)1100 ℃
Sample Temperature/℃ Kp/(g2·m-4·s-1) R2 Q/(kJ·mol-1)
1# 800 3.66×10-5 0.925 177.64
900 4.76×10-5 0.981
1000 2.16×10-4 0.957
1100 3.24×10-3 0.980
2# 800 1.17×10-5 0.953 229.70
900 2.18×10-5 0.904
1000 2.55×10-4 0.967
1100 3.05×10-3 0.970
Table 3  不同温度下310S耐热不锈钢的氧化速率常数、R2及激活能
Fig.4  不同温度下1/T与lnKp的关系
Fig.5  1#(a)和2#(b)试样在800~1100 ℃时氧化168 h后的XRD图谱
Fig.6  1#和2#试样在800 ℃与900 ℃下氧化168 h的SEM形貌
(a)1#, 800 ℃; (b)2#, 800 ℃; (c)1#, 900 ℃; (d)2#, 900 ℃
Region O Cr Mn Fe Ni Si
1 19.46 73.46 3.22 2.65 1.21
2 27.38 42.61 19.77 8.16 2.08
3 22.26 72.19 1.65 2.86 1.03
4 22.37 63.28 9.14 5.21
5 25.82 59.30 1.74 13.14
6 18.62 68.40 10.33 2.65
Table 4  图 6中氧化膜的EDS成分分析(质量分数/%)
Fig.7  1#和2#试样在800 ℃与900 ℃下氧化168 h的氧化膜截面SEM形貌
(a)1#, 800 ℃; (b)2#, 800 ℃; (c)1#, 900 ℃; (d)2#, 900 ℃
Fig.8  1#和2#试样在800 ℃与900 ℃下氧化168 h的氧化膜截面SEM形貌及元素分布
(a)1#, 800 ℃; (b)2#, 800 ℃; (c)1#, 900 ℃; (d)2#, 900 ℃
Fig.9  1#和2#试样在1000 ℃与1100 ℃下氧化168 h的SEM形貌
(a)1#, 1000 ℃; (b)2#, 1000 ℃; (c)1#, 1100 ℃; (d)2#, 1100 ℃
Region O Cr Mn Fe Ni Si
1 16.16 48.58 26.82 6.03 2.41
2 24.55 44.59 28.39 2.47
3 30.29 67.07 1.80 0.84
4 27.86 43.40 19.87 8.87
5 20.97 40.43 29.18 7.90 1.51
6 26.02 68.31 2.74 1.05 1.88
Table 5  图 9中氧化膜的EDS成分分析(质量分数/%)
Fig.10  1#和2#试样在1000 ℃与1100 ℃下氧化168 h的氧化膜截面SEM形貌
(a)1#, 1000 ℃; (b)2#, 1000 ℃; (c)1#, 1100 ℃; (d)2#, 1100 ℃
Fig.11  1#和2#试样在1000 ℃与1100 ℃下氧化168 h的氧化膜截面SEM形貌及元素分布
(a)1#, 1000 ℃; (b)2#, 1000 ℃; (c)1#, 1100 ℃; (d)2#, 1100 ℃
Fig.12  310S耐热钢在不同温度下的氧化膜形成机制
(a)800 ℃; (b)900 ℃; (c)1000 ℃; (d)1100 ℃
Sample Thickness/μm
800 ℃ 900 ℃ 1000 ℃ 1100 ℃
1# 15.00 8.01 13.96 14.45
2# 5.07 6.05 13.13 19.80
Table 6  不同温度下1#和2#试样氧化膜厚度
1 MATHIVANAN A , SENTHILKUMAR A , DEVAKUMARAN K . Pulsed current and dual pulse gas metal arc welding of grade AISI 310S austenitic stainless steel[J]. Defence Technology, 2015, 11 (3): 269- 274.
doi: 10.1016/j.dt.2015.05.006
2 AMRA M , DEHMOLAEI R , ZAREE S . On the dissimilar metal welding of 1.4742 ferritic to 310S austenitic stainless steels utilizing different filler metals[J]. Metallography, Microstructure and Analysis, 2019, 8 (5): 623- 641.
doi: 10.1007/s13632-019-00574-9
3 LEE J H , YAMASHITA S , OGURA T , et al. Effects of cooling rate on solidification cracking behaviour in 310S stainless steel[J]. Journal of Advanced Joining Processes, 2021, 3, 100044.
doi: 10.1016/j.jajp.2021.100044
4 MA C , GU D , DAI D , et al. Microstructure evolution and high-temperature oxidation behaviour of selective laser melted TiC/TiAl composites[J]. Surface and Coatings Technology, 2019, 375, 524- 543.
5 RAMOS P , COELHO R S , SOLDERA F , et al. Residual stress analysis in thermally grown oxide scales developed on Nb-alloyed refractory austenitic stainless steels[J]. Corrosion Science, 2021, 178, 109266.
6 PANICAUD B , GROSSEAU-POUSSARD J L , DINHUT J F . On the growth strain origin and stress evolution prediction during oxidation of metals[J]. Applied Surface Science, 2006, 252 (16): 5700- 5713.
doi: 10.1016/j.apsusc.2005.07.075
7 PARK S J , LEE K H , SEO S M , et al. Statistics of oxidation resistance of Ni-(0-15)Co-(8-15)Cr-(0-5)Mo-(0-10)W-(3-8)Al-(0-5)Ti-(0-10)Ta-0.1C-0.01B superalloys at 1000 ℃ by compositional variations[J]. Rare Metals, 2018, 39 (8): 918- 927.
8 WANG X , SZPUNAR J A . Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N[J]. Journal of Alloys and Compounds, 2018, 752, 40- 52.
doi: 10.1016/j.jallcom.2018.04.173
9 GAO Q , LIU Z , LI H , et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: effect of cold rolling[J]. Journal of Materials Science & Technology, 2021, 68, 91- 102.
10 CAI X C , DING S J , JIN S B , et al. Superior high-temperature oxidation resistance of nanocrystalline 304 austenitic stainless steel containing a small amount of Si[J]. Scripta Materialia, 2021, 204, 114115.
11 PARRY V , COL A , PASCAL C . Beneficial effect of cold-working on high temperature oxidation resistance of austenitic stainless steel[J]. Corrosion Science, 2019, 160, 108149.
doi: 10.1016/j.corsci.2019.108149
12 KIM J H , KIM D I , SUWAS S , et al. Grain-size effects on the high-temperature oxidation of modified 304 austenitic stainless steel[J]. Oxidation of Metals, 2012, 79 (3/4): 239- 247.
13 孟倩, 喇培清, 李恒, 等. 铝含量对铸造316L不锈钢组织和性能的影响[J]. 热加工工艺, 2016, 45 (10): 64- 68.
13 MENG Q , LA P Q , LI H , et al. Influence of Al content on microstructure and properties of casting 316L stainless steel[J]. Hot Working Technology, 2016, 45 (10): 64- 68.
14 宋伊, 喇培清, 孟倩, 等. Al对铸造310S不锈钢组织和力学性能的影响[J]. 特种铸造及有色合金, 2018, 38 (6): 592- 595.
14 SONG Y , LA P Q , MENG Q , et al. Effects of Al content on microstructure and mechanical properties of casting 310S stainless[J]. Special Casting & Nonferrous Alloys, 2018, 38 (6): 592- 595.
15 喇培清, 马付良, 孟倩, 等. 不同Al质量分数的铸造304不锈钢组织和性能[J]. 兰州理工大学学报, 2016, 42 (2): 1- 8.
doi: 10.3969/j.issn.1673-5196.2016.02.001
15 LA P Q , MA F L , MENG Q , et al. Microstructure and performance of cast 304 stainless steel with different aluminum content[J]. Journal of Lanzhou University of Technology, 2016, 42 (2): 1- 8.
doi: 10.3969/j.issn.1673-5196.2016.02.001
16 任培东, 宋仁伯. 310S耐热不锈钢高温循环氧化性能[J]. 钢铁研究学报, 2017, 29 (10): 844- 851.
16 REN P D , SONG R B . High temperature cyclic oxidation property of 310S heat-resistance stainless steel[J]. Journal of Iron and Steel Research, 2017, 29 (10): 844- 851.
17 ZHOU Y, ZOU D, ZHANG W, et al. Formation mechanism of oxide scales grown on X10CrAlSi18 and 310S heat-resistant stainless steels under high temperature in air[C]//CMC 2017: High Performance Structural Materials. Singapore: Springer Nature Singapore Pte Ltd, 2017: 759-766.
18 WEI L , ZHENG J , CHEN L , et al. High temperature oxidation behavior of ferritic stainless steel containing W and Ce[J]. Corrosion Science, 2018, 142, 79- 92.
doi: 10.1016/j.corsci.2018.07.017
19 BONNET G , AGUILAR G , COLSON J C , et al. The effect of rare earths deposited on steel surfaces, by different processes (sol/gel, electrophoresis, OMCVD) on high temperature corrosion behaviour[J]. Corrosion Science, 1993, 35 (5/8): 893- 899.
20 LI N , XIAO J , PRUD'HOMME N , et al. Residual stresses in oxide scale formed on Fe-17Cr stainless steel[J]. Applied Surface Science, 2014, 316, 108- 113.
doi: 10.1016/j.apsusc.2014.07.195
21 HINDAM H , WHITTLE D P . Microstructure, adhesion and growth kinetics of protective scales on metals and alloys[J]. Oxidation of Metals, 1982, 18 (5/6): 245- 284.
22 MALAFAIA A M , NASCIMENTO V R D , SOUSA L M , et al. Anomalous cyclic oxidation behaviour of an Fe-Mn-Si-Cr-Ni alloy—a finite element analysis[J]. Corrosion Science, 2019, 147, 223- 230.
doi: 10.1016/j.corsci.2018.11.018
23 LANDKOF M , LEVEY A V , BOONE D H , et al. The effect of surface additives on the oxidation of chromia-forming alloys[J]. Corrosion, 1985, 41 (6): 344- 357.
doi: 10.5006/1.3582016
24 RIFFARD F , BUSCAIL H , CAUDRON E , et al. In-situ characterization of the oxide scale formed on yttrium-coated 304 stainless steel at 1000 ℃[J]. Materials Characterization, 2002, 49 (1): 55- 65.
doi: 10.1016/S1044-5803(02)00278-4
25 COX M G C , MCENANEY B , SCOTT V D . A chemical diffusion model for partitioning of transition elements in oxide scales on alloys[J]. Philosophical Magazine, 1972, 26 (4): 839- 851.
doi: 10.1080/14786437208226960
26 ALLEN G C , HARRIS S J , JUSTON J A , et al. A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy[J]. Applied Surface Science, 1988, 37 (1): 111- 134.
27 CHENG X , JIANG Z , WEI D , et al. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere[J]. Surface and Coatings Technology, 2014, 258, 257- 267.
doi: 10.1016/j.surfcoat.2014.09.019
28 MEIER G H , JUNG K , MU N , et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys[J]. Oxidation of Metals, 2010, 74 (5/6): 319- 340.
29 SWAMINATHAN S , SPIEGEL M . Effect of alloy composition on the selective oxidation of ternary Fe-Si-Cr, Fe-Mn-Cr model alloys[J]. Surface and Interface Analysis, 2008, 40 (3/4): 268- 272.
30 LI H , ZHANG B , JIANG Z , et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air[J]. Journal of Alloys and Compounds, 2016, 686, 326- 338.
doi: 10.1016/j.jallcom.2016.06.023
31 迟成宇, 于鸿垚, 谢锡善. 600 ℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展[J]. 世界钢铁, 2012, 12 (4): 50- 65.
doi: 10.3969/j.issn.1672-9587.2012.04.008
31 CHI C Y , YU H Y , XIE X S . Research and development of austenitic heat-resistant steels for 600 ℃ superheat/ reheater tubes of USC power plant boilers[J]. World Iron & Steel, 2012, 12 (4): 50- 65.
doi: 10.3969/j.issn.1672-9587.2012.04.008
[1] 张明达, 刘英飒, 郑真, 曹京霞, 黄旭. 合金元素复合化对Ti2AlNb合金高温抗氧化性能影响[J]. 材料工程, 2022, 50(1): 93-100.
[2] 谢小青, 李轩, 吕威, 来升, 刘益, 李建军, 谢文玲. Co对Ti45Al-8Nb-0.3Y合金组织结构和高温抗氧化性能的影响[J]. 材料工程, 2022, 50(1): 101-108.
[3] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[4] 白银, 刘正东, 包汉生, 何西扣, 陈正宗. 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程, 2021, 49(6): 77-84.
[5] 王鑫, 万义兴, 张平, 单彩霞, 谢莹莹, 梁秀兵. 难熔高熵合金NbMoTaWTi/Zr的高温氧化行为[J]. 材料工程, 2021, 49(12): 100-106.
[6] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[7] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[8] 杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
[9] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[10] 张林伟, 王鲁, 王全胜, 陆磊, 宁先进. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程, 2016, 44(11): 45-50.
[11] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
[12] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[13] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[14] 张鹏飞, 李建平, 蔡妍, 陆峰. 电弧离子镀AlYSi涂层抗高温氧化性能研究[J]. 材料工程, 2011, 0(1): 76-80.
[15] 贺定勇, 王晓芳, 崔丽, 蒋建敏, 李晓延. 铬含量对铁基涂层抗高温氧化性能的影响[J]. 材料工程, 2009, 0(8): 24-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn