Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 88-101    DOI: 10.11868/j.issn.1001-4381.2022.000002
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
短纤维增强C/C-SiC复合材料的微观结构与力学性能
刘聪聪1, 王雅雷1,*(), 熊翔1, 叶志勇1, 刘在栋1, 刘宇峰1,2
1 中南大学 粉末冶金国家重点实验室, 长沙 410083
2 航天材料及工艺研究所 先进功能复合材料技术重点实验室, 北京 100076
Microstructure and mechanical property of short fiber reinforced C/C-SiC composites
Congcong LIU1, Yalei WANG1,*(), Xiang XIONG1, Zhiyong YE1, Zaidong LIU1, Yufeng LIU1,2
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Science and Technology of Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
全文: PDF(25106 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

综合原料的热物理性能分析和配比设计,实现了C/C复合材料载体孔隙体积的精细控制,采用热压-熔渗两步法在低温条件下制备了具有高致密、低残余Si含量特征的短碳纤维增强C/C-SiC复合材料。系统解析了C/C-SiC复合材料成型过程中的结构演变行为,研究了短纤维增强C/C-SiC复合材料的力学性能和失效机制。结果表明:多孔C/C复合材料载体孔隙的孔径呈双极分布特征,添加芳纶纤维可提高网络孔隙结构的连通性,具有显著的孔隙结构调控作用。SiC基体以网络骨架形态分布于C/C-SiC复合材料内部,与纤维束形成了强界面结合钉扎结构,高含量纤维协同作用下使C/C-SiC复合材料具有优异的综合力学性能,添加芳纶纤维可明显增加复合材料内部裂纹扩展路径,提高C/C-SiC复合材料的断裂韧性。碳纤维的面内各向同性分布及陶瓷相层间均匀分布对C/C-SiC复合材料承载、摩擦稳定性提升均具有积极作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘聪聪
王雅雷
熊翔
叶志勇
刘在栋
刘宇峰
关键词 C/C-SiC复合材料热压-熔渗两步法微观结构力学性能    
Abstract

One-staged forming of porous C/C composites as well as volume fraction control of pores were realized, based on thermophysical property analysis and proportioning design of raw materials. Short fiber reinforced C/C-SiC composites with high densification and low content of residual Si were prepared by hot-pressing-infiltration two-step method at low temperature. The structural evolution of C/C-SiC composites was analyzed in detail, the mechanical properties as well as failure behaviors were also investigated. Results show that the porous C/C composites present bipolar distribution in pore size, adding aramid fibers is an effective method to improve the connectivity of network pores, exhibiting a significant regulatory effect. Both SiC network skeleton and pinning structure with strong interface between SiC matrix and carbon fiber bundle can entrust the excellent mechanical properties of C/C-SiC composites with high carbon fiber content. In addition, the fracture toughness of C/C-SiC composites can be improved significantly with the addition of aramid fibers, resulting in the increase of crack propagation path. The isotropic distribution of carbon fiber in plane and the uniform distribution of ceramic phase between layers play a positive role in improving the bearing capacity and friction stability of C/C-SiC composites.

Key wordsC/C-SiC composites    hot pressing-infiltration two-step method    microstructure    mechanical property
收稿日期: 2022-01-11      出版日期: 2022-07-18
中图分类号:  TB332  
基金资助:航天动力先进技术湖北省重点实验室开放基金(FY-20Y21-14-11);湖南省科技成果转化及产业化计划项目(2019GK5070)
通讯作者: 王雅雷     E-mail: yaleipm@csu.edu.cn
作者简介: 王雅雷(1982—), 男, 副研究员, 博士, 主要从事高性能碳基复合材料、粉末冶金材料的研究, 联系地址: 湖南省长沙市岳麓区麓山南路932号中南大学校本部粉末冶金研究院(410083), E-mail: yaleipm@csu.edu.cn
引用本文:   
刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
Congcong LIU, Yalei WANG, Xiang XIONG, Zhiyong YE, Zaidong LIU, Yufeng LIU. Microstructure and mechanical property of short fiber reinforced C/C-SiC composites. Journal of Materials Engineering, 2022, 50(7): 88-101.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000002      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/88
Fig.1  酚醛树脂(a)和芳纶纤维(b)的TG-DSC曲线
Mass fraction/% C/C theoretical density/(g·cm-3) C/C theoretical porosity/%
Carbon fiber Phenolic resin Aramid fiber
69 31 0 1.38 22
69 26 5 1.37 23
Table 1  碳纤维增强树脂复合材料原料配比
Fig.2  短纤维增强C/C-SiC复合材料制备工艺流程
Fig.3  纤维增强树脂复合材料的微观形貌和EDS结果
(a), (b)无芳纶纤维;(c), (d)含芳纶纤维;位置1(e), 2(f)的EDS结果
Fig.4  多孔C/C复合材料低倍(1)和高倍(2)微观形貌
(a)CR-C/C复合材料;(b)CRF-C/C复合材料
Fig.5  多孔C/C复合材料孔隙三维重构图(1)与球棍模型(2)
(a)CR-C/C复合材料;(b)CRF-C/C复合材料
Sample Pore coordination number Pore tortuosity
X Y Z
CR-C/C 0.84 1.25 1.51 5.79
CRF-C/C 1.39 1.23 1.75 3.04
Table 2  多孔C/C复合材料的孔隙结构参数
Fig.6  多孔C/C复合材料的孔径分布微分曲线
Fig.7  短纤维增强C/C-SiC复合材料的XRD图谱
Fig.8  短纤维增强C/C-SiC复合材料的微观形貌
(a)CR-C/C-SiC复合材料;(b)CRF-C/C-SiC复合材料;(c), (d)SiC骨架结构; (1)低倍;(2)高倍
Fig.9  短纤维增强C/C-SiC复合材料的力学性能
Fig.10  短纤维增强C/C-SiC复合材料的弯曲载荷-位移曲线
Fig.11  短纤维增强C/C-SiC复合材料的弯曲断口形貌
(a)CR-C/C-SiC复合材料;(b)CRF-C/C-SiC复合材料; (1)低倍;(2)高倍
Fig.12  短纤维增强C/C-SiC复合材料的压缩断口形貌
(a)CR-C/C-SiC复合材料;(b)CRF-C/C-SiC复合材料; (1)低倍;(2)高倍
1 KRENKEL W , HEIDENREICH B , RENZ R . C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials, 2002, 4 (7): 427- 436.
doi: 10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C
2 KRENKEL W. C/C-SiC composites for hot structures and advanced friction systems[C]//KRIVEN W M, LIN H T. 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: B. Westerville, USA: AMER CERAMIC SOC, 2003: 583-592.
3 HEIDENREICH B , BAMSEY N , SHI Y , et al. Manufacture and test of C/C-SiC sandwich structures[J]. Ceas Space Journal, 2020, 12 (1): 73- 84.
doi: 10.1007/s12567-019-00263-x
4 PATEL M , SAURABH K , PRASAD V V B , et al. High temperature C/C-SiC composite by liquid silicon infiltration: a literature review[J]. Bulletin of Materials Science, 2012, 35 (1): 63- 73.
doi: 10.1007/s12034-011-0247-5
5 LI F , XIAO P , LI Z , et al. Microstructures and properties of C/C-SiC composites derived from different gaseous carbon matrix precursors[J]. Ceramics International, 2021, 47 (21): 30777- 30789.
doi: 10.1016/j.ceramint.2021.07.258
6 WANG J , PEI X , ZHI J , et al. The effects of phenolic resin-derived PyC interlayers on microstructure and mechanical properties of Cf/SiC composites[J]. Ceramics International, 2018, 44 (14): 16157- 16163.
doi: 10.1016/j.ceramint.2018.05.076
7 KRNEL K , STADLER Z , KOSMAC T . Carbon/carbon-silicon-carbide dual-matrix composites for brake discs[J]. Materials and Manufacturing Processes, 2008, 23 (6): 587- 590.
doi: 10.1080/10426910802160437
8 KRENKEL W, LANGHOF N. Ceramic matrix composites for high performance friction applications[C]//Proceedings of the Ⅳ Advanced Ceramics and Applications Conference. Paris: Atlantis Press, 2017: 13-28.
9 孙国帅, 刘荣军, 曹英斌, 等. C/C-SiC刹车材料的研究进展[J]. 材料导报, 2016, 30 (增刊1): 516- 519.
9 SUN G S , LIU R J , CAO Y B , et al. Research progress of C/C-SiC composite for brake[J]. Materials Review, 2016, 30 (Suppl 1): 516- 519.
10 XI O Y , LI Z , XIAO P , et al. Effects of the high-temperature treatment of C/C composites on their tribological properties[J]. New Carbon Materials, 2019, 34 (5): 472- 480.
doi: 10.1016/S1872-5805(19)60025-9
11 JIANG G , YANG J , XU Y , et al. Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration[J]. Composites Science and Technology, 2008, 68 (12): 2468- 2473.
doi: 10.1016/j.compscitech.2008.04.025
12 肖鹏, 李专, 熊翔. 高性能制动系统用炭纤维增强炭和SiC双基体(C/C-SiC)复合材料[J]. 材料工程, 2009, (增刊2): 263- 267.
12 XIAO P , LI Z , XIONG X . C/C-SiC composites for advanced friction systems[J]. Journal of Materials Engineering, 2009, (Suppl 2): 263- 267.
13 RENZ R , SEIFERT G , KRENKEL W . Integration of CMC brake disks in automotive brake systems[J]. International Journal of Applied Ceramic Technology, 2012, 9 (4): 712- 724.
doi: 10.1111/j.1744-7402.2012.02812.x
14 MA X , FAN S , SUN H , et al. Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs[J]. Tribology International, 2020, 142, 105981.
doi: 10.1016/j.triboint.2019.105981
15 DAI J , ZHANG Z , ZU Y , et al. Role of fiber-matrix adhesion at CFRP stage on microstructure and mechanical properties of C/C-SiC composite[J]. International Journal of Applied Ceramic Technology, 2021, 19 (1): 79- 90.
16 XU J , GUO L , WANG H , et al. Mechanical property and toughening mechanism of 2.5D C/C-SiC composites with high textured pyrocarbon interface[J]. Ceramics International, 2021, 47 (20): 29183- 29190.
doi: 10.1016/j.ceramint.2021.07.081
17 李金伟, 肖鹏, 李专, 等. 短碳纤维含量对温压-熔渗工艺制备C/C-SiC复合材料力学性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19 (5): 825- 831.
doi: 10.3969/j.issn.1673-0224.2014.05.025
17 LI J W , XIAO P , LI Z , et al. Effect of short carbon fiber content on mechanical properties of C/C-SiC composites prepared by WP-LSI[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19 (5): 825- 831.
doi: 10.3969/j.issn.1673-0224.2014.05.025
18 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43 (4): 98- 101.
18 MA Y , CHEN Z H . Effect of 1800℃ annealing on microstructures and properties of C/SiC composites fabricaed by precuesor infiltration and pyrolysis[J]. Journal of Materials Engineering, 2015, 43 (4): 98- 101.
19 杜鹏程, 王雅雷, 熊翔, 等. 全长纤维针刺C/C-SiC复合材料的力学与热扩散性能[J]. 矿冶工程, 2021, 41 (3): 114- 119.
doi: 10.3969/j.issn.0253-6099.2021.03.028
19 DU P C , WANG Y L , XIONG X , et al. Mechanical and thermal diffusion properties of C/C-SiC composites with full-length fiber needled preform[J]. Mining and Metallurgical Engineering, 2021, 41 (3): 114- 119.
doi: 10.3969/j.issn.0253-6099.2021.03.028
20 陈刘定, 童小燕, 姚磊江, 等. 开孔对平纹编织C/SiC陶瓷基复合材料力学行为的影响[J]. 材料工程, 2009, (9): 71- 74.
doi: 10.3969/j.issn.1001-4381.2009.09.017
20 CHEN L D , TONG X Y , YAO L J , et al. Influence of open hole on the mechanical behavior of plain-woven C/SiC ceramic matrix composites[J]. Journal of Materials Engineering, 2009, (9): 71- 74.
doi: 10.3969/j.issn.1001-4381.2009.09.017
21 李专, 肖鹏, 岳静, 等. C/C-SiC材料不同制动速率下的湿式摩擦磨损性能[J]. 材料工程, 2013, (3): 71- 76.
doi: 10.3969/j.issn.1001-4381.2013.03.014
21 LI Z , XIAO P , YUE J , et al. Wet friction and wear properties of C/C-SiC composites during different braking speeds[J]. Journal of Materials Engineering, 2013, (3): 71- 76.
doi: 10.3969/j.issn.1001-4381.2013.03.014
22 HEIDENREICH B , KRAFT H , BAMSEY N , et al. Shear properties of C/C-SiC sandwich structures[J]. International Journal of Applied Ceramic Technology, 2022, 19 (1): 54- 61.
doi: 10.1111/ijac.13818
23 赵彦伟, 孙文婷, 李军平, 等. C/C-SiC复合材料的反应熔渗法制备与微观组织[J]. 宇航材料工艺, 2013, 43 (2): 64- 69.
doi: 10.3969/j.issn.1007-2330.2013.02.015
23 ZHAO Y W , SUN W T , LI J P , et al. Preparation and microstructure of C/C-SiC composites by reaction melt infiltration[J]. Aerospace Materials and Technology, 2013, 43 (2): 64- 69.
doi: 10.3969/j.issn.1007-2330.2013.02.015
24 YANG J , AI Y , LV X , et al. Fabrication of C/C-SiC composites using high-char-yield resin[J]. International Journal of Applied Ceramic Technology, 2020, 18 (2): 449- 456.
25 GOO B C . Development and characterization of C/C-SiC brake disc[J]. Materials and Manufacturing Processes, 2016, 31 (8): 979- 988.
doi: 10.1080/10426914.2015.1019112
26 李专. C/C-SiC摩擦材料的制备、结构和性能[D]. 长沙: 中南大学, 2010.
26 LI Z. Preparation, microstructure and properties of C/C-SiC braking composite[D]. Changsha: Central South University, 2010.
27 张海连, 段淼, 李四中, 等. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49 (7): 85- 91.
27 ZHANG H L , DUAN M , LI S Z , et al. Fabication of C/C-SiC composites via catalytic carbonization-in situ reaction and catalytic carbonization-reactive melt infiltration process[J]. Journal of Materials Engineering, 2021, 49 (7): 85- 91.
28 TZENG S S , CHR Y G . Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis[J]. Materials Chemistry and Physics, 2002, 73 (2/3): 162- 169.
29 JAIN N , KOSIN M , SHI Y , et al. Characterization and modeling of transverse micro-cracking during pyrolysis process of carbon fiber reinforced plastics[J]. International Journal of Applied Ceramic Technology, 2019, 16 (5): 1734- 1743.
30 王玲玲, 马文闵, 嵇阿琳, 等. C/C多孔体对C/C-SiC复合材料制备及性能的影响[J]. 材料工程, 2014, (7): 34- 38.
30 WANG L L , MA W M , JI A L , et al. Effect of C/C porous perform on the preparation and properties of C/C-SiC composites[J]. Journal of Materials Engineering, 2014, (7): 34- 38.
31 SRIVASTAVA V K , KRENKEL W , D'SOUZA V J A , et al. Manufacturing, analysis and modelling of porous Si-SiC ceramics derived by oxidation from C/C-Si-SiC composites[J]. Journal of Ceramic Science and Technology, 2011, 2 (2): 111- 118.
32 ZHANG Y , XU Y , GAO L , et al. Preparation and microstructural evolution of carbon/carbon composites[J]. Materials Science and Engineering: A, 2006, 430 (1/2): 9- 14.
33 王晓静, 李寅, 梁欢, 等. 基于原位红外光谱的热固性酚醛树脂固化过程研究[J]. 宇航材料工艺, 2018, 48 (6): 72- 77.
33 WANG X J , LI Y , LIANG H , et al. Study on curing process of thermosetting phenolic resin based on in-situ infrared spectroscopy[J]. Aerospace Materials and Technology, 2018, 48 (6): 72- 77.
34 田志宏, 张秀华, 梅鸣华. 压汞法测试耐火材料孔结构的原理与方法[J]. 理化检验(物理分册), 2013, 49 (9): 615- 617.
34 TIAN Z H , ZHANG X H , MEI M H . Principle and method of refractory pore structure measurement by mercury intrusion method[J]. Physical Testing and Chemical Analysis (Part A), 2013, 49 (9): 615- 617.
35 李滔, 李闽, 张烈辉, 等. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29 (8): 1181- 1189.
35 LI T , LI M , ZHANG L H , et al. Study on the relationship of tortuosity with por structure in micro-porous media[J]. Natural Gas Geoscience, 2018, 29 (8): 1181- 1189.
36 丁星星, 湛利华, 李树健, 等. 先进树脂基复合材料高压微波固化工艺实验研究[J]. 玻璃钢/复合材料, 2018, (1): 68- 72.
36 DING X X , ZHAN L H , LI S J , et al. Experimental study on high pressure microwave curing process of advanced resin matrix composites[J]. Fiber Reinforced Plastics/Composites, 2018, (1): 68- 72.
[1] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[4] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[5] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[6] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[7] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[8] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[9] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[10] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[11] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[12] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[13] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[14] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[15] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn