Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 148-154    DOI: 10.11868/j.issn.1001-4381.2022.000017
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响
曾宏伟, 李红(), 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良
上海大学 材料科学与工程学院 复合材料研究中心, 上海 200444
Effect of pyrolytic carbon content on properties of carbon/carbon-polyimide composites
Hongwei ZENG, Hong LI(), Yumin YAO, Min YANG, Yinping TAO, Musu REN, Jinliang SUN
Research Center of Composite Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
全文: PDF(12303 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过化学气相渗透和浸渍-固化成型工艺制备碳/碳-聚酰亚胺复合材料。首先采用化学气相渗透法对碳毡进行热解碳的沉积,制得热解碳含量分别在7.33%(质量分数,下同),14.55%,22.00%的多孔碳/碳坯体,再经过特定的浸渍-固化工艺,依次制得碳/碳-聚酰亚胺复合材料P1,P2,P3以及未添加热解碳的对照组P0。通过SEM、线膨胀系数测试和力学性能测试,探究不同热解碳含量对碳/碳-聚酰亚胺复合材料微观形貌结构、平均线膨胀系数以及力学性能的影响。结果表明:在20~300℃的温度区间,P0,P1,P2,P3的XY向平均线膨胀系数在(0.67~0.79)×10-6-1之间,四组XY向平均线膨胀系数基本相当。P1,P2,P3的Z向平均线膨胀系数较P0依次降低41.6%,41.8%,24.1%,热解碳显著降低了材料的Z向平均线膨胀系数。P0,P1,P2,P3的XY向压缩强度依次是243.91,244.73,216.65,210.79 MPa,Z向压缩强度依次是269.22,258.80,246.68,219.20 MPa,P1压缩强度与P0相当。P0,P1,P2,P3的Z向弯曲强度依次是92.77,77.11,80.71,86.06 MPa。不同的热解碳含量对材料的力学性能影响不同,较低的热解碳含量基本保持了材料的压缩强度,而较高的热解碳含量可基本保持材料的弯曲强度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾宏伟
李红
姚彧敏
杨敏
陶银萍
任慕苏
孙晋良
关键词 碳/碳-聚酰亚胺复合材料热解碳微观形貌平均线膨胀系数力学性能    
Abstract

Carbon/carbon-polyimide composites were prepared by chemical vapor infiltration and vacuum-pressure impregnation curing process. Firstly, the carbon felt was deposited with pyrolytic carbon by chemical vapor infiltration method to prepare porous carbon/carbon materials with pyrolytic carbon contents of 7.33%(mass fraction, the same below), 14.55% and 22.00%, respectively. Then, through a specific impregnation curing process, the carbon/carbon-polyimide composites P1, P2 and P3 and the control group P0 without pyrolytic carbon were obtained in turn. Through SEM, linear expansion coefficient test and mechanical properties test, the effects of different pyrolytic carbon contents on the microstructure, average linear expansion coefficient and mechanical properties of carbon/carbon-polyimide composites were investigated. The results show that in the temperature range of 20-300℃, the XY-direction average linear expansion coefficients of P0, P1, P2 and P3 are between (0.67-0.79)×10-6-1, and the XY-direction average linear expansion coefficients of four groups are basically the same. The Z-direction average linear expansion coefficients of P1, P2 and P3 decrease by 41.6%, 41.8% and 24.1%, respectively compared with P0. Pyrolytic carbon significantly reduces the Z-direction average linear expansion coefficient of materials. The XY-direction compressive strengths of P0, P1, P2 and P3 are 243.91, 244.73, 216.65 MPa and 210.79 MPa, respectively, and the Z-direction compressive strengths are 269.22, 258.80, 246.68 MPa and 219.20 MPa, respectively. The compressive strength of P1 is equivalent to that of P0. The Z-direction bending strengths of P0, P1, P2 and P3 are 92.77, 77.11, 80.71 MPa and 86.06 MPa, respectively. Different pyrolytic carbon contents have different effects on the mechanical properties of materials. The lower pyrolytic carbon content can basically maintain compressive strength of materials, while the higher pyrolytic carbon content can basically maintain bending strength of materials.

Key wordscarbon/carbon-polyimide composite    pyrolytic carbon    microstructure    average linear expan-sion coefficient    mechanical property
收稿日期: 2022-01-11      出版日期: 2023-01-16
中图分类号:  TB332  
基金资助:上海市教育发展基金会和上海市教育委员会"曙光计划"(18SG34)
通讯作者: 李红     E-mail: lihong2007@shu.edu.cn
作者简介: 李红(1979-), 女, 研究员, 博士, 主要从事碳基复合材料方面的研究工作, 联系地址: 上海市宝山区上大路99号上海大学复合材料研究中心(200444), E-mail: lihong2007@shu.edu.cn
引用本文:   
曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
Hongwei ZENG, Hong LI, Yumin YAO, Min YANG, Yinping TAO, Musu REN, Jinliang SUN. Effect of pyrolytic carbon content on properties of carbon/carbon-polyimide composites. Journal of Materials Engineering, 2023, 51(1): 148-154.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000017      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/148
Sample Density/
(g·cm-3)
Mass fraction
of CF/%
Mass fraction
of PyC/%
Mass fraction
of PI/%
Porosity/
%
P0 1.30 16.62 0 83.38 8.0
P1 1.34 17.69 7.33 74.98 8.6
P2 1.37 15.58 14.55 69.87 8.8
P3 1.40 16.49 22.00 61.51 8.4
Table 1  碳/碳-聚酰亚胺复合材料基本参数
Fig.1  碳/碳-聚酰亚胺复合材料制备流程(a)及固化工艺(b)
Fig.2  碳/碳坯体(a)和碳/碳-聚酰亚胺复合材料(b)微观形貌
Fig.3  碳纤维表面(a)和经热解碳包覆后的碳纤维(b)形貌
Direction Average linear expansion coefficient/10-6-1
P0 P1 P2 P3
XY 0.72 0.67 0.75 0.79
Z 8.82 5.15 5.13 6.69
Table 2  碳/碳-聚酰亚胺复合材料XY向、Z向平均线膨胀系数
Fig.4  不同热解碳含量的碳/碳-聚酰亚胺复合材料压缩强度
Fig.5  碳/碳-聚酰亚胺复合材料压缩破坏图像(a)P1的Z向压缩;(b)P1的XY向压缩;(c)P3的Z向压缩;(d)P3的XY向压缩;(e)剪切破坏;(f)横向开裂破坏
Fig.6  不同热解碳含量的碳/碳-聚酰亚胺复合材料Z向弯曲强度(a)和应力-应变曲线(b)
Fig.7  不同热解碳含量的碳/碳-聚酰亚胺复合材料在弯曲应力破坏下的微观形貌
(a)P1;(b)P2;(c),(d)P3
1 于广, 魏化震, 李大勇, 等. 热处理温度对碳纤维增强聚酰亚胺复合材料性能影响[J]. 工程塑料应用, 2020, 48 (6): 62- 67.
1 YU G , WEI H Z , LI D Y , et al. Effect of heat treatment temperature on properties of carbon fiber reinforced polyimide composites[J]. Engineering Plastics Application, 2020, 48 (6): 62- 67.
2 YANG J , XIAO Q , LIN Z , et al. Growth of ultra-dense MoS2 nanosheets on carbon fibers to improve the mechanical and tribological properties of polyimide composites[J]. Friction, 2020, 9 (5): 13.
3 LV Y Q , PENG C Z . Improved interfacial properties of PI composites through graphene oxide and carbon nanotubes on carbon fiber surface[J]. Surface and Interface Analysis, 2018, 50 (6): 634- 639.
doi: 10.1002/sia.6448
4 宋俊涛. 碳纤维表面碳涂层的水热制备及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
4 SONG J T. Hydrothermal preparation and mechanism of carbon coating on carbon fiber surface[D]. Harbin: Harbin Institute of Technology, 2018.
5 SHARMA S P , TING J M , VILAR R . Electron microscopy study of surface-treated carbon fiber for interface modification in composites[J]. Diamond and Related Materials, 2020, 109, 108021.
doi: 10.1016/j.diamond.2020.108021
6 孙景峰, 赵峰, 邢丽欣, 等. 热解沉积结合PAMAM接枝改性碳纤维表面[J]. 高科技纤维与应用, 2017, 42 (4): 27- 31.
6 SUN J F , ZHAO F , XING L X , et al. Modification of carbon fiber surface by pyrolysis deposition combined with PAMAM grafting[J]. Hi-Tech Fiber and Application, 2017, 42 (4): 27- 31.
7 任海洋, 徐菁, 梁磊, 等. PI-C/Cf的耐热性能和抗磨损性能[J]. 高分子材料科学与工程, 2021, 37 (3): 40- 49.
7 REN H Y , XU J , LIANG L , et al. Heat resistance and wear resistance of PI-C/Cf[J]. Polymer Materials Science & Engineering, 2021, 37 (3): 40- 49.
8 耿真真, 李红, 杨敏, 等. 聚酰亚胺改性C/C复合材料的制备及性能[J]. 复合材料学报, 2019, 36 (1): 186- 191.
8 GENG Z Z , LI H , YANG M , et al. Preparation and properties of polyimide modified C/C composites[J]. Acta Materiae Compositae Sinica, 2019, 36 (1): 186- 191.
9 俞鸣明, 薛鹍, 刘雪强, 等. 一种碳纤维增强双元基体复合材料的高温性能和摩擦学性能[J]. 高分子材料科学与工程, 2021, 37 (8): 93- 101.
9 YU M M , XUE K , LIU X Q , et al. High temperature and tribological properties of a carbon fiber reinforced binary matrix composite[J]. Polymer Materials Science & Engineering, 2021, 37 (8): 93- 101.
10 陈烈民, 杨宝宁. 复合材料的力学分析[M]. 北京: 中国科学技术出版社, 2006.
10 CHEN L M , YANG B N . Mechanical analysis of composites[M]. Beijing: China Science and Technology Press, 2006.
11 秦琅, 罗瑞盈. 热解碳对先驱体浸渍裂解3D-Cf/SiC复合材料性能影响[J]. 中国陶瓷工业, 2018, 25 (1): 1- 6.
11 QIN L , LUO R Y . Effect of pyrolytic carbon on properties of precursor impregnated pyrolysis 3D-Cf/SiC composites[J]. China Ceramic Industry, 2018, 25 (1): 1- 6.
12 王兴业. 复合材料力学分析与设计[M]. 长沙: 国防科技大学出版社, 1999.
12 WANG X Y . Mechanical analysis and design of composites[M]. Changsha: National University of Defense Science and Technology Press, 1999.
13 张东生, 李新涛, 夏汇浩, 等. 三种不同碳纤维的纳米压痕行为[J]. 复合材料学报, 2017, 34 (6): 1340- 1346.
13 ZHANG D S , LI X T , XIA H H , et al. Nanoindentation behavior of three different carbon fibers[J]. Acta Materiae Compositae Sinica, 2017, 34 (6): 1340- 1346.
14 彭雪锋, 戴宗妙, 蒋建军, 等. C/C复合材料不同碳基体的纳米压痕行为研究[J]. 装备环境工程, 2019, 16 (10): 64- 70.
14 PENG X F , DAI Z M , JIANG J J , et al. Study on nano indentation behavior of C/C composites with different carbon substrates[J]. Equipment Environmental Engineering, 2019, 16 (10): 64- 70.
15 胡超, 徐静, 余家欣, 等. 氧化石墨烯/聚酰亚胺复合材料摩擦学行为及机理研究[J]. 摩擦学学报, 2020, 40 (1): 12- 20.
15 HU C , XU J , YU J X , et al. Study on tribological behavior and mechanism of graphene oxide/polyimide composites[J]. Tribology, 2020, 40 (1): 12- 20.
16 王超, 舒振, 单晗, 等. 温度处理对聚酰亚胺薄膜性能的影响研究[J]. 机电工程技术, 2018, 47 (11): 26- 28.
16 WANG C , SHU Z , SHAN H , et al. Study on the effect of temperature treatment on the properties of polyimide films[J]. Mechanical & Electrical Engineering Technology, 2018, 47 (11): 26- 28.
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[4] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[5] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[6] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[7] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[8] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[9] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[10] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[11] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[12] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[13] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[14] 程慧聪, 王雅雷, 李阿欣, 刘怀菲, 武囡囡, 刘蓉. 并流共沉淀法合成Dy2O3-ZrO2纳米粉体[J]. 材料工程, 2022, 50(6): 97-106.
[15] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn