Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (12): 35-50    DOI: 10.11868/j.issn.1001-4381.2022.000040
  综述 本期目录 | 过刊浏览 | 高级检索 |
质子交换膜燃料电池关键材料的研究进展
杜真真1,2,3, 王珺1,2,3, 王晶2,3, 于帆2,3, 李炯利1,2,3, 王旭东1,2,3,*()
1 中国航发北京航空材料研究院, 北京 100095
2 北京石墨烯技术研究院有限公司, 北京 100094
3 北京市石墨烯及应用工程技术研究中心, 北京 100095
Research progress of key materials in proton exchange membrane fuel cell
Zhenzhen DU1,2,3, Jun WANG1,2,3, Jing WANG2,3, Fan YU2,3, Jiongli LI1,2,3, Xudong WANG1,2,3,*()
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Institute of Graphene Technology, Beijing 100094, China
3 Beijing Engineering Research Centre of Graphene Application, Beijing 100095, China
全文: PDF(1042 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

燃料电池是一种非常有前景的新能源体系。燃料电池不使用热力发动机,利用电极和电解质界面发生的化学反应直接将燃料的化学能转换成电能,反应不受卡诺循环限制,因此,具有高的能量转换效率。在燃料电池中,质子交换膜燃料电池(PEMFC)在便携式设备、交通运输以及固定装置领域具有重要的应用前景。然而,目前的PEMFC还存在一些问题,主要包括高成本、功率不足、稳定性差等问题,限制了其大规模商业化应用。这些问题的根本原因在于PEMFC中阴极催化剂、气体扩散层、质子交换膜和双极板等关键材料的成本和性能还不能满足PEMFC商业化的要求。要实现PEMFC的大规模应用,需要开发先进的阴极催化剂、气体扩散层、质子交换膜和双极板等关键材料。针对PEMFC对低成本、高性能先进材料的需求,本文综述了阴极催化剂、气体扩散层、质子交换膜和双极板等关键材料的研究进展以及应用面临的问题,并指出了未来的发展方向:加强铂合金催化剂以及金属-氮-碳(M-N-C)化合物催化剂的规模化制备工艺的探索;制备兼具高质子传导率和优异力学性能的质子交换膜;详细研究改性气体扩散层在不同的工况条件下对PEMFC性能的影响;开发具有优良耐蚀性和导电性的涂层或新型金属材料用于双极板。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜真真
王珺
王晶
于帆
李炯利
王旭东
关键词 燃料电池关键材料质子交换膜催化剂气体扩散层双极板    
Abstract

Fuel cell, which directly enables the generation of electricity from the conversion of the fuel through an electrochemical reaction at the electrode and electrolyte interface, without going through the heat engine process, is an incredibly powerful renewable energy technology. The electrochemical reaction in fuel cell is not restricted by the Carnot cycle, so it has high energy conversion efficiency. Proton exchange membrane fuel cell (PEMFC), in particular, has been regarded as the most promising candidate for transportations, portable equipment and fixed devices.However, there are still some problems in PEMFC, including high cost, insufficient power and poor stability, which limit the large-scale commercial application of PEMFC. The basic reason behind these problems lies in the key materials, such as cathode catalyst, gas diffusion layer, proton exchange membrane and bipolar plate in fuel cell, which can not meet the requirements of PEMFC commercialization owing to their high cost and low performance. Therefore, in order to achieve large-scale application of PEMFC, advanced cathode catalysts, gas diffusion layers, proton exchange membranes and bipolar plates are needed. For the requirement of low-cost and high-performance advanced materials for PEMFC, the research status of these key materials and main challenges in their practical application were summarized in the review, and the future development direction was pointed out: developing the technology of large-scale preparation of platinum alloy and metal-nitrogen-carbon (M-N-C) compound catalysts, preparation of proton exchange membranes with high proton conductivity and excellent mechanical property, studying the influence of modified gas diffusion layer on PEMFC performance under different working conditions, developing coatings or new metal materials with excellent corrosion resistance and electrical conductivity for bipolar plates.

Key wordsfuel cell    key material    proton exchange membrane    catalyst    gas diffusion layer    bipolar plate
收稿日期: 2022-01-18      出版日期: 2022-12-21
中图分类号:  TK91  
基金资助:中国航发北京航空材料研究院益材基金项目(KJ53200209);国家自然科学基金项目(51802296);北京市科技新星计划(Z191100001119102)
通讯作者: 王旭东     E-mail: netfacn@163.com
作者简介: 王旭东(1980—),男,研究员,博士,研究方向为石墨烯复合材料,联系地址:北京市海淀区丰智东路3号北京石墨烯技术研究院有限公司(100094),E-mail: netfacn@163.com
引用本文:   
杜真真, 王珺, 王晶, 于帆, 李炯利, 王旭东. 质子交换膜燃料电池关键材料的研究进展[J]. 材料工程, 2022, 50(12): 35-50.
Zhenzhen DU, Jun WANG, Jing WANG, Fan YU, Jiongli LI, Xudong WANG. Research progress of key materials in proton exchange membrane fuel cell. Journal of Materials Engineering, 2022, 50(12): 35-50.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000040      或      http://jme.biam.ac.cn/CN/Y2022/V50/I12/35
Fig.1  质子交换膜燃料电池的组成示意图[5]
Fig.2  提高Pt基催化剂ORR性能的调控方法[12, 17]
Fig.3  化学改性的纳米碳在ORR中的应用
(a)三种N-C结构形式[59];(b)氮掺杂碳材料催化ORR原理[57]
Sample Proton conductivity/(S·cm-1) Test condition Reference
PBI/RGO-3/PA 0.028 170 ℃, without humidity [70]
(PU/CNT-CdTe/PU/CS)150/60%(mass fraction, the same below)PA 0.068 150 ℃, without humidity [71]
CS/CNT fluid-3 0.044 80 ℃,100% RH [72]
PBI@ZIF-67 0.041 200 ℃,100% RH [73]
PBI/ZrP 0.192 160 ℃ without humidity [74]
Nafion/SiO2 0.242 80 ℃,100% RH [75]
Nafion/ZrO2 0.05 150 ℃,100% RH [76]
Nafion-GO 0.19 80 ℃,100% RH [77]
Nafion/GO-2.0 0.277 110 ℃,100% RH [78]
Nafion/FDPA 0.031 80 ℃,40% RH [79]
SF-Nafion 0.033 110 ℃,60% RH [80]
SPAES-5SDCDPS 0.35 90 ℃,100% RH [81]
SPES30-HY30 0.1 80 ℃,90% RH [82]
SPEEK/n-BuOH 0.314 80 ℃,100% RH [83]
SPEEK70/Copolymer 0.1 80 ℃,100% RH [84]
SPI-0.5%-GO 1.2 80 ℃,100% RH [85]
Table 1  不同质子交换膜的性能
Fig.4  气体扩散层的结构示意图[93]
Fig.5  气体扩散层的亲/疏水改性
(a)疏水处理前的碳纸微观形貌[112];(b)PTFE疏水处理后的碳纸微观形貌[112];(c)微孔层的亲/疏水结构[113]
Fig.6  用于燃料电池的双极板材料[123]
1 REN X , WANG Y , LIU A , et al. Current progress and performance improvement of Pt/C catalysts for fuel cells[J]. Journal of Materials Chemistry A, 2020, 8 (46): 24284- 24306.
doi: 10.1039/D0TA08312G
2 SHEN G , LIU J , WU H B , et al. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells[J]. Nature Communications, 2020, 11 (1): 1191.
doi: 10.1038/s41467-020-14822-y
3 WANG F C , PENG C H . The development of an exchangeable PEMFC power module for electric vehicles[J]. International Journal of Hydrogen Energy, 2014, 39 (8): 3855- 3867.
doi: 10.1016/j.ijhydene.2013.12.128
4 WANG X X , SWIHART M T , WU G . Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2 (7): 578- 589.
doi: 10.1038/s41929-019-0304-9
5 DEBE M K . Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486 (7401): 43- 51.
doi: 10.1038/nature11115
6 YANG E Y , ZHOU X Y , LI B , et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2020, 46 (5): 4259- 4282.
7 王倩倩, 郑俊生, 裴冯来, 等. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47 (4): 1- 14.
doi: 10.3969/j.issn.1673-1433.2019.04.001
7 WANG Q Q , ZHENG J S , PEI F L , et al. Structural optimization of PEMFC membrane electrode assembly[J]. Journal of Materials Engineering, 2019, 47 (4): 1- 14.
doi: 10.3969/j.issn.1673-1433.2019.04.001
8 XU Z , QIU D , YI P , et al. Towards mass applications: a review on the challenges and developments in metallic bipolar plates for PEMFC[J]. Progress in Natural Science, 2020, 30 (6): 815- 824.
doi: 10.1016/j.pnsc.2020.10.015
9 LIN R , CAI X , ZENG H , et al. Stability of high-performance Pt-based catalysts for oxygen reduction reactions[J]. Advanced Materials, 2018, 30 (17): 1705332.
doi: 10.1002/adma.201705332
10 THOMPSON S T , PAPAGEORGOPOULOS D . Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles[J]. Nature Catalysis, 2019, 2 (7): 558- 561.
doi: 10.1038/s41929-019-0291-x
11 SHAO M , CHANG Q , DODELET J P , et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116 (6): 3594- 3657.
doi: 10.1021/acs.chemrev.5b00462
12 ZAMAN S , HUANG L , DOUKA A I , et al. Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives[J]. Angewandte Chemie International Edition, 2021, 133 (33): 17976- 17996.
13 LIU J , JIAO M , MEI B , et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2019, 58 (4): 1163- 1167.
doi: 10.1002/anie.201812423
14 LIU Q , LI Y , ZHENG L , et al. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells[J]. Advanced Energy Materials, 2020, 10 (20): 2000689.
doi: 10.1002/aenm.202000689
15 KIM J , ROH C W , SAHOO S K , et al. Highly durable platinum single-atom alloy catalyst for electrochemical reactions[J]. Advanced Energy Materials, 2018, 8 (1): 1701476.
doi: 10.1002/aenm.201701476
16 WANG X , LI Z , QU Y , et al. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design[J]. Chem, 2019, 5 (6): 1486- 1511.
doi: 10.1016/j.chempr.2019.03.002
17 LIU M , ZHAO Z , DUAN X , et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31 (6): 1802234.
doi: 10.1002/adma.201802234
18 HUANG L , ZAMAN S , TIAN X , et al. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells[J]. Accounts Chemical Research, 2021, 54 (2): 311- 322.
doi: 10.1021/acs.accounts.0c00488
19 CHEN Y , CHENG T , GODDARD Ⅲ W A . Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt[J]. Journal of the American Chemical Society, 2020, 142 (19): 8625- 8632.
doi: 10.1021/jacs.9b13218
20 LI M , GU Z L , ZHANG L , et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354 (6318): 1414- 1419.
doi: 10.1126/science.aaf9050
21 XIA B Y , WU H B , WANG X , et al. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties[J]. Angewandte Chemie, 2013, 52 (47): 12337- 12340.
doi: 10.1002/anie.201307518
22 ZHAO Z , CHEN C , LIU Z , et al. Pt-based nanocrystal for electrocatalytic oxygen reduction[J]. Advanced Materials, 2019, 31 (31): 1808115.
doi: 10.1002/adma.201808115
23 LIU J , LI Y , WU Z , et al. Pt0.61Ni/C for high-efficiency cathode of fuel cells with superhigh platinum utilization[J]. The Journal of Physical Chemistry C, 2018, 122 (26): 14691- 14697.
doi: 10.1021/acs.jpcc.8b03966
24 HUANG X , ZHAO Z , CAO L , et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction[J]. Science, 2015, 348 (6240): 1230- 1234.
doi: 10.1126/science.aaa8765
25 MATIN M A , LEE J , KIM G W , et al. Morphing Mn core@Pt shell nanoparticles: effects of core structure on the ORR performance of Pt shell[J]. Applied Catalysis B, 2020, 267, 118727.
doi: 10.1016/j.apcatb.2020.118727
26 LETEBA G M , MITCHELL D R G , LEVECQUE P B J , et al. Topographical and compositional engineering of core-shell Ni@Pt ORR electro-catalysts[J]. RSC Advances, 2020, 10 (49): 29268- 29277.
doi: 10.1039/D0RA05195K
27 ZHANG Y , QIN J , LENG D , et al. Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts[J]. Journal of Power Sources, 2021, 485, 229340.
doi: 10.1016/j.jpowsour.2020.229340
28 FAN J , XU Q , LI Q , et al. Core-shell and yolk-shell nanocatalysts: core-shell functional materials for electrocatalysis[M]. Singapore: Springer Singapore, 2021: 303- 342.
29 YANG J , YANG J , YING J Y . Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction[J]. ACS Nano, 2012, 6 (11): 9373- 9382.
doi: 10.1021/nn303298s
30 TAO L , HUANG B , JIN F , et al. Atomic PdAu interlayer sandwiched into Pd/Pt core/shell nanowires achieves superstable oxygen reduction catalysis[J]. ACS Nano, 2020, 14 (9): 11570- 11578.
doi: 10.1021/acsnano.0c04061
31 ZHANG L , ROLING L T , WANG X , et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets[J]. Science, 2015, 349 (6246): 412- 416.
doi: 10.1126/science.aab0801
32 CHEN S , LI M , GAO M , et al. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis[J]. Nano Letters, 2020, 20 (3): 1974- 1979.
doi: 10.1021/acs.nanolett.9b05251
33 KIM H Y , KIM J M , HA Y , et al. Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis[J]. ACS Catalysis, 2019, 9 (12): 11242- 11254.
doi: 10.1021/acscatal.9b03155
34 CHO K Y , YEOM Y S , SEO H Y , et al. Molybdenum-doped PdPt@Pt core-shell octahedra supported by ionic block copolymer-functionalized graphene as a highly active and durable oxygen reduction electrocatalyst[J]. ACS Applied Materials & Interfaces, 2017, 9 (2): 1524- 1535.
35 LU X F , XIA B Y , ZANG S Q , et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59 (12): 4634- 4650.
doi: 10.1002/anie.201910309
36 LI Y , LI Y , ZHU E , et al. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite[J]. Journal of the American Chemical Society, 2012, 134 (30): 12326- 12329.
doi: 10.1021/ja3031449
37 HSIEH S H , HSU M C , LIU W L , et al. Study of Pt catalyst on graphene and its application to fuel cell[J]. Applied Surface Science, 2013, 277, 223- 230.
doi: 10.1016/j.apsusc.2013.04.029
38 HOQUE M A , HASSAN F M , JAUHAR A M , et al. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (1): 93- 98.
39 SINGH S K , TAKEYASU K , NAKAMURA J . Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials[J]. Advanced Materials, 2019, 31 (13): 1804297.
doi: 10.1002/adma.201804297
40 TIAN X , LUO J , NAN H , et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2016, 138 (5): 1575- 1583.
doi: 10.1021/jacs.5b11364
41 GÖHL D , GARG A , PACIOK P , et al. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells[J]. Nature Materials, 2020, 19 (3): 287- 291.
doi: 10.1038/s41563-019-0555-5
42 ANDO F , GUNJI T , TANABE T , et al. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via transition metal oxide support interactions[J]. ACS Catalysis, 2021, 11 (15): 9317- 9332.
doi: 10.1021/acscatal.1c01868
43 MIRSHEKARI G R , RICE C A . Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment[J]. Journal of Power Sources, 2018, 396, 606- 614.
doi: 10.1016/j.jpowsour.2018.06.061
44 YAO C , YU J , YANG S , et al. Porous Co/NPC@TiO2/TiN composite: facile preparation and excellent catalytic activity for the oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2021, 883, 160838.
doi: 10.1016/j.jallcom.2021.160838
45 GOSWAMI C , HAZARIKA K K , BHARALI P . Transition metal oxide nanocatalysts for oxygen reduction reaction[J]. Materials Science for Energy Technologies, 2018, 1 (2): 117- 128.
doi: 10.1016/j.mset.2018.06.005
46 CAO X , ZHENG X , TIAN J , et al. Cobalt sulfide embedded in porous nitrogen-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Electrochimica Acta, 2016, 191, 776- 783.
doi: 10.1016/j.electacta.2016.01.137
47 HAN C , LI Q , WANG D , et al. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction[J]. Small, 2018, 14 (17): 1703642.
doi: 10.1002/smll.201703642
48 XIAO Y , TANG L . High-throughput approach exploitation: two-dimensional double-metal sulfide (M2S2) of efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Energy & Fuels, 2020, 34 (4): 5006- 5015.
49 DU L , PRABHAKARAN V , XIE X , et al. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions[J]. Advanced Materials, 2021, 33 (6): 1908232.
doi: 10.1002/adma.201908232
50 LANG P , YUAN N , JIANG Q , et al. Recent advances and prospects of metal-based catalysts for oxygen reduction reaction[J]. Energy Technology, 2020, 8 (3): 1900984.
doi: 10.1002/ente.201900984
51 SONG M , SONG Y , SHA W , et al. Recent advances in non-precious transition metal/nitrogen-doped carbon for oxygen reduction electrocatalysts in PEMFCs[J]. Catalysts, 2020, 10 (1): 141.
doi: 10.3390/catal10010141
52 HAO Y R , XUE H , LV L , et al. Unraveling the synergistic effect of defects and interfacial electronic structure modulation of pealike CoFe@Fe3N to achieve superior oxygen reduction performance[J]. Applied Catalysis B, 2021, 295, 120314.
doi: 10.1016/j.apcatb.2021.120314
53 WANG X , JIA Y , MAO X , et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis[J]. Advanced Materials, 2020, 32 (16): 2000966.
doi: 10.1002/adma.202000966
54 SONI R , BHANGE S N , KURUNGOT S . A 3-D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries[J]. Nanoscale, 2019, 11 (16): 7893- 7902.
doi: 10.1039/C9NR00977A
55 CUI L , CUI L , LI Z , et al. A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells[J]. Journal of Materials Chemistry A, 2019, 7 (28): 16690- 16695.
doi: 10.1039/C9TA03518D
56 BULUSHEV D A , CHUVILIN A L , SOBOLEV V I , et al. Single Au atoms on the surface of N-free and N-doped carbon: interaction with formic acid and methanol molecules[J]. Topics in Catalysis, 2019, 62 (5): 508- 517.
57 GUO D , SHIBUYA R , AKIBA C , et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351 (6271): 361- 365.
doi: 10.1126/science.aad0832
58 XIA Z , AN L , CHEN P , et al. Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors[J]. Advanced Energy Materials, 2016, 6 (17): 1600458.
doi: 10.1002/aenm.201600458
59 DENG H , LI Q , LIU J , et al. Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline[J]. Carbon, 2017, 112, 219- 229.
doi: 10.1016/j.carbon.2016.11.014
60 YANG L , JIANG S , ZHAO Y , et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2011, 50 (31): 7132- 7135.
doi: 10.1002/anie.201101287
61 JO G , SHANMUGAM S . Single-step synthetic approach for boron-doped carbons as a non-precious catalyst for oxygen reduction in alkaline medium[J]. Electrochemistry Communications, 2012, 25, 101- 104.
doi: 10.1016/j.elecom.2012.09.025
62 XIA W , MAHMOOD A , ZOU R , et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2015, 8 (7): 1837- 1866.
63 ZHONG J Q , HE L J , YANG Q X , et al. Glucose doping of a Glc-Fe-ZIF ORR catalyst for proton-exchange membrane fuel cells: optimising porous structures and improving performance[J]. Chemistry Select, 2021, 6 (6): 1271- 1275.
64 RAHUL B , ANH P , BO W , et al. High-throughput synthesis of zeolitic lmidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319 (5865): 939- 943.
doi: 10.1126/science.1152516
65 HOU Y , HUANG T , WEN Z , et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions[J]. Advanced Energy Materials, 2014, 4 (11): 1400337.
doi: 10.1002/aenm.201400337
66 ROSLI R E , SULONG A B , DAUD W R W , et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42 (14): 9293- 9314.
doi: 10.1016/j.ijhydene.2016.06.211
67 ARAYA S S , ZHOU F , LISO V , et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41 (46): 21310- 21344.
doi: 10.1016/j.ijhydene.2016.09.024
68 QUARTARONE E , ANGIONI S , MUSTARELLI P . Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review[J]. Materials, 2017, 10 (7): 687.
doi: 10.3390/ma10070687
69 VREGEN N , PEHLIVANO LU K , ÖZDEMIR Y , et al. Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42 (4): 2636- 2647.
doi: 10.1016/j.ijhydene.2016.07.009
70 CAI Y , YUE Z , XU S . A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere[J]. Journal of Applied Polymer Science, 2017, 134 (25): 44986.
71 JIA T , SHEN S , ZHAO J , et al. Ultrathin membranes formation via the layer by layer self-assembly of carbon nanotubes-based inorganics as high temperature proton exchange membranes[J]. International Journal of Hydrogen Energy, 2020, 45 (28): 14517- 14527.
doi: 10.1016/j.ijhydene.2020.03.175
72 WANG J , GONG C , WEN S , et al. Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications[J]. Carbohydrate Polymers, 2018, 186, 200- 207.
doi: 10.1016/j.carbpol.2018.01.032
73 ESCORIHUELA J , SAHUQUILLO Ó , GARCÍA-BERNABÉ A , et al. Phosphoric acid doped polybenzimidazole (PBI)/zeolitic imidazolate framework composite membranes with significantly enhanced proton conductivity under low humidity Conditions[J]. Nanomaterials, 2018, 8 (10): 775.
doi: 10.3390/nano8100775
74 ZHANG Q , LIU H , LI X , et al. Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane[J]. Polymer Engineering & Science, 2016, 56 (6): 622- 628.
75 KUSOGLU A , WEBER A Z . New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117 (3): 987- 1104.
doi: 10.1021/acs.chemrev.6b00159
76 LIU B , HU B , DU J , et al. Precise molecular-level modification of nafion with bismuth oxide clusters for high-performance proton-exchange membranes[J]. Angewandte Chemie International Edition, 2021, 60 (11): 6076- 6085.
doi: 10.1002/anie.202012079
77 MOTZ A R , KUO M C , HORAN J L , et al. Heteropoly acid functionalized fluoroelastomer with outstanding chemical durability and performance for vehicular fuel cells[J]. Energy & Environmental Science, 2018, 11 (6): 1499- 1509.
78 JUNG G B , WENG F B , SU A , et al. Nafion/PTFE/silicate membranes for high-temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2008, 33 (9): 2413- 2417.
doi: 10.1016/j.ijhydene.2008.01.056
79 WANG H , LI X , ZHUANG X , et al. Modification of nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 340, 201- 209.
doi: 10.1016/j.jpowsour.2016.11.072
80 JANG S , KANG Y S , CHOI J , et al. Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation[J]. Journal of Industrial and Engineering Chemistry, 2020, 90, 327- 332.
doi: 10.1016/j.jiec.2020.07.031
81 PARNIAN M J , ROWSHANZAMIR S , MOGHADDAM J A . Investigation of physicochemical and electrochemical properties of recast Nafion nanocomposite membranes using different loading of zirconia nanoparticles for proton exchange membrane fuel cell applications[J]. Materials Science for Energy Technologies, 2018, 1 (2): 146- 154.
doi: 10.1016/j.mset.2018.06.008
82 LI P , WU W , LIU J , et al. Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes[J]. Journal of Membrane Science, 2018, 555, 327- 336.
doi: 10.1016/j.memsci.2018.03.066
83 ZHANG B , CAO Y , JIANG S , et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J]. Journal of Membrane Science, 2016, 518, 243- 253.
doi: 10.1016/j.memsci.2016.07.032
84 FENG H , GAO S , SHI J , et al. Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor[J]. Electrochimica Acta, 2019, 299, 116- 124.
doi: 10.1016/j.electacta.2018.12.177
85 XU G , WU Z , WEI Z , et al. Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell[J]. Renewable Energy, 2020, 153, 935- 939.
doi: 10.1016/j.renene.2020.02.056
86 LI G , XIE J , CAI H , et al. New highly proton-conducting membrane based on sulfonated poly(arylene ether sulfone)s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39 (6): 2639- 2648.
doi: 10.1016/j.ijhydene.2013.11.049
87 KWON Y , LEE S Y , HONG S , et al. Novel sulfonated poly(arylene ether sulfone) containing hydroxyl groups for enhanced proton exchange membrane properties[J]. Polymer Chemistry, 2015, 6 (2): 233- 239.
doi: 10.1039/C4PY01218F
88 WANG R , WU X , YAN X , et al. Proton conductivity enhancement of SPEEK membrane through n-BuOH assisted self-organization[J]. Journal of Membrane Science, 2015, 479, 46- 54.
doi: 10.1016/j.memsci.2014.12.054
89 GVRTEKIN SEDEN M , BAVTURK E , INAN T Y , et al. Synthesis and fuel cell characterization of blend membranes from phenyl phosphine oxide containing flourinated novel polymers[J]. Journal of Power Sources, 2014, 271, 465- 479.
doi: 10.1016/j.jpowsour.2014.08.032
90 HE Y , TONG C , GENG L , et al. Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: size effect of graphene oxide[J]. Journal of Membrane Science, 2014, 458, 36- 46.
doi: 10.1016/j.memsci.2014.01.017
91 LU S , XIU R , XU X , et al. Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2014, 464, 1- 7.
doi: 10.1016/j.memsci.2014.03.053
92 OKONKWO P C , OTOR C . A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system[J]. International Journal of Energy Research, 2020, 45 (3): 3780- 3800.
93 PARK S , LEE J W , POPOV B N . Effect of carbon loading in microporous layer on PEM fuel cell performance[J]. Journal of Power Sources, 2006, 163 (1): 357- 363.
doi: 10.1016/j.jpowsour.2006.09.020
94 KONG C S , KIM D Y , LEE H K , et al. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2002, 108 (1/2): 185- 191.
95 CHEN L , LIN R , TANG S , et al. Structural design of gas diffusion layer for proton exchange membrane fuel cell at varying humidification[J]. Journal of Power Sources, 2020, 467, 228355.
doi: 10.1016/j.jpowsour.2020.228355
96 OZDEN A , SHAHGALDI S , LI X , et al. A review of gas diffusion layers for proton exchange membrane fuel cells—with a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74, 50- 102.
doi: 10.1016/j.pecs.2019.05.002
97 MORTAZAVI M , SANTAMARIA A D , BENNER J Z , et al. Enhanced water removal from PEM fuel cells using acoustic pressure waves[J]. Journal of the Electrochemical Society, 2019, 166 (7): 3143- 3153.
doi: 10.1149/2.0211907jes
98 SIMON C , KARTOUZIAN D , MULLER D , et al. Impact of microporous layer pore properties on liquid water transport in PEM fuel cells: carbon black type and perforation[J]. Journal of the Electrochemical Society, 2017, 164 (14): F1697- F1711.
doi: 10.1149/2.1321714jes
99 CHEN G , ZHANG G , GUO L , et al. Systematic study on the functions and mechanisms of micro porous layer on water transport in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41 (9): 5063- 5073.
doi: 10.1016/j.ijhydene.2016.01.074
100 ZHANG X , MA X , SHUAI S , et al. Effect of micro-porous layer on PEM fuel cells performance: considering the spatially variable properties[J]. International Journal of Heat and Mass Transfer, 2021, 178, 121592.
doi: 10.1016/j.ijheatmasstransfer.2021.121592
101 TANG H , WANG S , PAN M , et al. Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2007, 166 (1): 41- 46.
doi: 10.1016/j.jpowsour.2007.01.021
102 LIN G , LIU S , YU B , et al. Preparation of graded microporous layers for enhanced water management in fuel cells[J]. Journal of Applied Polymer Science, 2020, 137 (47): 49564.
doi: 10.1002/app.49564
103 NANADEGANI F S , LAY E N , SUNDEN B . Effects of an MPL on water and thermal management in a PEMFC[J]. International Journal of Energy Research, 2019, 43 (1): 274- 296.
doi: 10.1002/er.4262
104 GOVINDARAJAN R , PAYOYO J , FANG B , et al. Impact of carbon porosity on the performance of cathode microporous layers in proton exchange membrane fuel cells[J]. Fuel Cells, 2020, 20 (2): 220- 223.
doi: 10.1002/fuce.201900146
105 WANG G , UTAKA Y , WANG S . Planar-distributed wettability of microporous layer of polymer electrolyte fuel cell to improve cold start performance[J]. Journal of Power Sources, 2019, 437, 226930.
doi: 10.1016/j.jpowsour.2019.226930
106 SIMON C , ENDRES J , NEFZGER-LODERS B , et al. Interaction of pore size and hydrophobicity/hydrophilicity for improved oxygen and water transport through microporous layers[J]. Journal of the Electrochemical Society, 2019, 166 (13): 1022- 1035.
doi: 10.1149/2.1111913jes
107 LIU C , CHEN L , ZHU L . Fouling mechanism of hydrophobic polytetrafluoroethylene (PTFE) membrane by differently charged organics during direct contact membrane distillation (DCMD) process: an especial interest in the feed properties[J]. Journal of Membrane Science, 2018, 548, 125- 135.
doi: 10.1016/j.memsci.2017.11.011
108 YU S , HAO J , LI J , et al. Effect of distribution of polytetrafluoroethylene on durability of gas diffusion backing in proton exchange membrane fuel cell[J]. Materials Research Bulletin, 2020, 122, 110684.
doi: 10.1016/j.materresbull.2019.110684
109 ÖZTÜRK A , FIÇICILAR B , ERO LU , et al. Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts[J]. International Journal of Hydrogen Energy, 2017, 42 (33): 21226- 21249.
doi: 10.1016/j.ijhydene.2017.06.202
110 LATORRATA S , SANSOTERA M , GOLA M , et al. Innovative perfluoropolyether-functionalized gas diffusion layers with enhanced performance in polymer electrolyte membrane fuel cells[J]. Fuel Cells, 2020, 20 (2): 166- 175.
doi: 10.1002/fuce.201900169
111 CARCADEA E , VARLAM M , ISMAIL M , et al. PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers[J]. International Journal of Hydrogen Energy, 2020, 45 (14): 7968- 7980.
doi: 10.1016/j.ijhydene.2019.08.219
112 HAN M , CHAN S H , JIANG S P . Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2006, 159 (2): 1005- 1014.
doi: 10.1016/j.jpowsour.2005.12.003
113 KITAHARA T , NAKAJIMA H . Microporous layer-coated gas diffusion layer to reduce oxygen transport resistance in a polymer electrolyte fuel cell under high humidity conditions[J]. International Journal of Hydrogen Energy, 2016, 41 (22): 9547- 9555.
doi: 10.1016/j.ijhydene.2016.04.117
114 WU R , ZHU X , LIAO Q , et al. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model[J]. Electrochimica Acta, 2010, 55 (24): 7394- 7403.
doi: 10.1016/j.electacta.2010.07.018
115 SHOU D , FAN J , DING F . Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 225, 179- 186.
doi: 10.1016/j.jpowsour.2012.10.039
116 AHMED D , SUNG H , BAE J . Effect of GDL permeability on water and thermal management in PEMFCs—Ⅰ.isotropic and anisotropic permeability[J]. International Journal of Hydrogen Energy, 2008, 33 (14): 3767- 3785.
doi: 10.1016/j.ijhydene.2008.04.024
117 WILLIAMS M V , KUNZ H R , FENTON J M . Influence of convection through gas-diffusion layers on limiting current in PEM FCs using a serpentine flow field[J]. Journal of the Electrochemical Society, 2004, 151 (10): A1617.
doi: 10.1149/1.1789791
118 GAUTHIER E , HELLSTERN T , KEVREKIDIS I G , et al. Drop detachment and motion on fuel cell electrode materials[J]. ACS Applied Materials & Interfaces, 2012, 4 (2): 761- 771.
119 HELLSTERN T , GAUTHIER E , CHEAH M J , et al. The role of the gas diffusion layer on slug formation in gas flow channels of fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38 (35): 15414- 15427.
doi: 10.1016/j.ijhydene.2013.09.073
120 YE D H , GAUTHIER E , CHEAH M J , et al. The effect of gas diffusion layer compression on gas bypass and water slug motion in parallel gas flow channels[J]. AIChE Journal, 2015, 61 (1): 355- 367.
doi: 10.1002/aic.14686
121 GAO Y , MONTANA A , CHEN F . Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer[J]. Journal of Power Sources, 2017, 342, 252- 265.
doi: 10.1016/j.jpowsour.2016.12.052
122 HOLZER L , PECHO O , SCHUMACHER J , et al. Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part Ⅰ: effect of compression and anisotropy of dry GDL[J]. Electrochimica Acta, 2017, 227, 419- 434.
doi: 10.1016/j.electacta.2017.01.030
123 WILBERFORCE T , IJAODOLA O , OGUNGBEMI E , et al. Reference module in materials science and materials engineering: effect of bipolar plate materials on performance of fuel cells[M]. Amsterdam: Elsevier, 2018: 4.
124 SONG Y , ZHANG C , LING C Y , et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45 (54): 29832- 29847.
doi: 10.1016/j.ijhydene.2019.07.231
125 EHTESHAMI S M M , TAHERI A , CHAN S H . A review on ions induced contamination of polymer electrolyte membrane fuel cells, poisoning mechanisms and mitigation approaches[J]. Journal of Industrial and Engineering Chemistry, 2016, 34, 1- 8.
doi: 10.1016/j.jiec.2015.10.034
126 GHORBANI M M , TAHERIAN R , MOHAMMADI M , et al. Investigation of physical and electrical properties of TiN-coated SS316L as bipolar plate of proton exchange membrane fuel cells[J]. Surface Engineering, 2021, 37 (6): 822- 830.
doi: 10.1080/02670844.2020.1827943
127 MANDAL P , CHANDA U K , ROY S . A review of corrosion resistance method on stainless steel bipolar plate[J]. Materials Today, 2018, 5 (9): 17852- 17856.
128 ASRI N F , HUSAINI T , SULONG A B , et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: a review[J]. International Journal of Hydrogen Energy, 2017, 42 (14): 9135- 9148.
doi: 10.1016/j.ijhydene.2016.06.241
129 YI P , PENG L , ZHOU T , et al. Development and characterization of multilayered Cr-C/a-C: Cr film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 230, 25- 31.
doi: 10.1016/j.jpowsour.2012.11.063
130 冯利利, 汤思遥, 陈越, 等. 质子交换膜燃料电池金属双极板表面改性研究进展[J]. 中国科学: 化学, 2021, 51 (8): 1018- 1028.
130 FENG L L , TANG S Y , CHEN Y , et al. Research progress in surface modification of metal bipolar plates for proton exchange membrane fuel cells[J]. Scientia Sinica Chimica, 2021, 51 (8): 1018- 1028.
131 WANG L , NORTHWOOD D O , NIE X , et al. Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments[J]. Journal of Power Sources, 2010, 195 (12): 3814- 3821.
doi: 10.1016/j.jpowsour.2009.12.127
132 WU B , LIN G , FU Y , et al. Chromium-containing carbon film on stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35 (24): 13255- 13261.
doi: 10.1016/j.ijhydene.2010.09.036
133 MA G , ZHANG D , GUO P , et al. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates[J]. Journal of Materials Science & Technology, 2022, 105, 36- 44.
134 LU J L , ABBAS N , TANG J , et al. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments[J]. Electrochemistry Communications, 2019, 105, 106490.
doi: 10.1016/j.elecom.2019.106490
135 WANG Y , NORTHWOOD D O . An investigation into the effects of a nano-thick gold interlayer on polypyrrole coatings on 316L stainless steel for the bipolar plates of PEM fuel cells[J]. Journal of Power Sources, 2008, 175 (1): 40- 48.
doi: 10.1016/j.jpowsour.2007.09.089
136 KUAN Y D , CIOU C W , SHEN M Y , et al. Bipolar plate design and fabrication using graphite reinforced composite laminate for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46 (31): 16801- 16814.
doi: 10.1016/j.ijhydene.2020.08.030
137 STEIN T , EIN-ELI Y . Challenges and perspectives of metal-based proton exchange membrane's bipolar plates: exploring durability and longevity[J]. Energy Technology, 2020, 8 (6): 2000007.
doi: 10.1002/ente.202000007
138 李伟, 李争显, 刘林涛, 等. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48 (5): 31- 40.
138 LI W , LI Z X , LIU L T , et al. Recent progress of porous metal field in bipolar plate[J]. Journal of Materials Engineering, 2020, 48 (5): 31- 40.
139 KAHRAMAN H , ORHAN M F . Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling[J]. Energy Conversion and Management, 2017, 133, 363- 384.
doi: 10.1016/j.enconman.2016.10.053
140 RAHIMI-ESBO M , RANJBAR A A , RAMIAR A , et al. Improving PEM fuel cell performance and effective water removal by using a novel gas flow field[J]. International Journal of Hydrogen Energy, 2016, 41 (4): 3023- 3037.
doi: 10.1016/j.ijhydene.2015.11.001
141 WANG J . Theory and practice of flow field designs for fuel cell scaling-up: a critical review[J]. Applied Energy, 2015, 157, 640- 663.
doi: 10.1016/j.apenergy.2015.01.032
142 LENG Y , MING P , YANG D , et al. Stainless steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes[J]. Journal of Power Sources, 2020, 451, 227783.
doi: 10.1016/j.jpowsour.2020.227783
143 KERKOUB Y , BENZAOUI A , HADDAD F , et al. Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell[J]. Energy Conversion and Management, 2018, 174, 260- 275.
doi: 10.1016/j.enconman.2018.08.041
[1] 孙小卉, 刘淑红, 卢璐, 史继诚, 徐洪峰. 碳载体预处理对燃料电池Co-N/C非铂催化剂氧还原性能的影响[J]. 材料工程, 2022, 50(9): 52-58.
[2] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[3] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[4] 张少威, 蒲秀好, 万艳红, 祝康, 夏长荣. 掺杂对Sr2Fe1.5Mo0.5O6-δ阳极材料电化学性能影响研究进展[J]. 材料工程, 2021, 49(9): 1-13.
[5] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[6] 郑秋燕, 杨智, 李茂辉, 潘廷仙, 秦好丽, 田娟. 铁前驱体对FeN/ZIF-8催化剂氧还原活性的影响[J]. 材料工程, 2021, 49(6): 132-139.
[7] 方滔, 陈力, 廉博博, 胡健, 李海龙. 炭化过程施压对气体扩散层用碳纸结构与性能的影响[J]. 材料工程, 2021, 49(5): 98-105.
[8] 高岩, 冯文辰, 栾涛, 陈宝明, 张文科, 李诗杰, 迟世丹. 不同锰含量纳米MnO2-Fe2O3-CeO2/Al2O3的制备、表征及其催化还原NO/NO2性能[J]. 材料工程, 2021, 49(3): 115-124.
[9] 李梦娟, 韩荣, 张静雅, 许永正, 黄梦媛, 贡浩天, 吴采芩. 海水可降解Fe3O4@PVA/PLGA复合膜的制备及性能[J]. 材料工程, 2021, 49(12): 130-138.
[10] 孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(1): 23-34.
[11] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[12] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[13] 靳宇, 李家峰, 何南, 文陈, 崔庆新, 白晶莹. 纳米多孔Pd-Cu/Pd-Ag催化剂的制备及其电催化性能[J]. 材料工程, 2020, 48(5): 62-67.
[14] 庄金亮, 刘湘粤, 杜嬛. TEMPO功能化锆基MOFs的合成及醇催化氧化性能[J]. 材料工程, 2020, 48(10): 169-175.
[15] 谢博尧, 张纪梅, 郝帅帅, 毕明刚, 朱海彬, 张丽萍. 层状双氢氧化物析氧催化剂的研究进展[J]. 材料工程, 2020, 48(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn