1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Zr is one of the most deeply investigated and widely used microalloying elements. The low diffusivity of Zr and the formation of thermal-stable Al3Zr dispersoids with the properties of low density, high melting temperature and low interface misfit in Al matrix, making Zr owing a broad prospect of application in developing heat-resistant Al alloys. However, strengthening by Al3Zr has been limited by either low number density or low volume fraction. In addition, the interaction among multiple components is very complex in multi-component Al alloys during solidification, deformation and heat treatment, and it is very difficult to achieve a good combination in strengthening of Al3Zr with the intrinsic phase of each system. In this review, the existing form, the precipitation and coarsening behavior, and the strengthening mechanism of Zr element in Zr-containing Al alloys were summarized. The mechanism of complex microalloying with multiple elements on promoting Al3Zr dispersion was briefly introduced. Finally, the effects of Zr addition on several series of Al-based alloys were summarized. In sum, microalloying with Zr is of great significance for regulating microstructure and improving room temperature/high temperature strength in Al alloys.
Fig.2 Al3Zr弥散相内部的反相畴界 (a)TEM dark-field images documenting coarsening of L12-Al3Zr at 425 ℃, and the appearance of APB during aging[35]; (b)3D atomic model of the Al3Zr-L12 sheared precipitate showing the successive glide planes and the sequence of shears(the corresponding projection along [001] is shown in an inset at each step)[38]
Fig.3 Al3Zr协助MgZn2形核原子示意图[42] (a)homogeneous distribution of solutes; (b)Zn partitioning into Al3Zr dispersoids after solution heat treatment; (c)solute segregation to the interfaces of L12 dispersoids in the initial state of aging; (d)L12 dispersoids assisted η′ formation during aging
Fig.4 Al3Zr粒子的析出行为模拟 (a)equilibrium Al-rich Al-Zr binary phase diagram with metastable Al3Zr(L12) solvus calculated by ab-initio calculations[14]; predicted number density and mean radius as a function of the distance between dendrite edge and center(b), Zr concentration after 480 ℃/24 h homogenization(c)[70]
Fig.6 Zr元素偏聚对析出相热稳定性的影响[85] (a)hardness data for the as-aged and heat-treated at temperatures ranging between 200 ℃ and 350 ℃ (200 h exposure time at each temperature), corresponding SEM-BSE figures displaying the size/density/distribution of Al2Cu precipitates; (b)APT 2D contour plots of a precipitate cross section for an ACMZ alloy exposed to 350 ℃ for 2000 h
Fig.7 Zr微量添加对一些3×××合金组织/性能的影响 (a)precipitation of α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA3003 alloy[89]; (b)enhanced precipitation behaviour of α in 3003 alloy with high Si content[64]; (c)hardening effect caused by Al3(Sc, Zr) particles in an Al-Mn-Sc-Zr alloy[92]; (d)bright-field and center-dark-field TEM images showing both α- and Al3(Sc, Zr) dispersoids in an AA3004 alloy with Sc and Zr additions[93]
1
ROBSON J D , ENGLER O , SIGLI C , et al. Advances in microstructural understanding of wrought aluminum alloys[J]. Metallurgical and Materials Transactions A, 2020, 51 (9): 4377- 4389.
doi: 10.1007/s11661-020-05908-9
GAO Y H , LIU G , SUN J . Tailoring the strengthening particles in Al alloys by microalloying[J]. Materials China, 2019, 38 (3): 231- 241.
3
DORIN T , RAMAJAYAM M , LAMB J , et al. Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys[J]. Materials Science and Engineering: A, 2017, 707, 58- 64.
doi: 10.1016/j.msea.2017.09.032
4
HE Y , ZHANG X , YOU J . Effects of minor contents of Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2006, 16, 1228- 1235.
doi: 10.1016/S1003-6326(06)60406-8
ZHAO M Q. Study of microstructure and mechanical properties and stability of Al3Zr in microalloyed Al-Cu-(Zr, Ti, V) cast alloy[D]. Chongqing: Chongqing University, 2019.
6
LIU W , XIAO W , XU C , et al. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy[J]. Materials Science and Engineering: A, 2017, 693, 93- 100.
doi: 10.1016/j.msea.2017.03.097
7
NES E , BILLDAL H . The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution[J]. Acta Metallurgica, 1977, 25 (9): 1039- 1046.
doi: 10.1016/0001-6160(77)90133-X
8
NES E . Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloys[J]. Acta Metallurgica, 1972, 20 (4): 499- 506.
doi: 10.1016/0001-6160(72)90005-3
9
NES E , BILLDAL H . Non-equilibrium solidification of hyperperitetic Al-Zr alloys[J]. Acta Metallurgica, 1977, 25 (9): 1031- 1037.
doi: 10.1016/0001-6160(77)90132-8
10
RYUM N . Precipitation and recrystallization in an Al-0.5 wt.%Zr alloy[J]. Acta Metallurgica, 1969, 17 (3): 269- 278.
doi: 10.1016/0001-6160(69)90067-4
11
RYSTAD S , RYUM N . A metallographical investigation of precipitation and recrystallization process in an Al-Zr alloy[J]. Aluminium, 1977, 53 (3): 193- 195.
12
YOSHIDA H , BAHA Y . The role of zirconium to improve strength and stress-corrosion resistance of Al-Zn-Mg and Al-Zn-Mg-Cu alloys[J]. Transactions of the Japan Insititute of Metals, 1982, 23 (10): 620- 630.
doi: 10.2320/matertrans1960.23.620
13
HORNBOGEN E , STARKE E A . Theory assisted design of high strength low alloy aluminium[J]. Acta Metallurgica Materialia, 1993, 41 (1): 1- 16.
doi: 10.1016/0956-7151(93)90334-O
14
KNIPLING K E , DUNAND D C , SEIDMAN D N . Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys[J]. Metallurgical and Materials Transactions A, 2007, 38 (10): 2552- 2563.
doi: 10.1007/s11661-007-9283-6
15
KNIPLING K E , KARNESKY R A , LEE C P , et al. Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at.%) alloys during isochronal aging[J]. Acta Materialia, 2010, 58 (15): 5184- 5195.
doi: 10.1016/j.actamat.2010.05.054
16
KNIPLING K E , DUNAND D C , SEIDMAN D N . Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600 ℃[J]. Acta Materialia, 2008, 56 (6): 1182- 1195.
doi: 10.1016/j.actamat.2007.11.011
17
CHUNG S C , HAN S Z , LEE H M O , et al. Coarsening phenomenon of L12 precipitates in rapidly solidified Al-3at%(Ti, V, Zr) system[J]. Scripta Metallurgica et Materiala, 1995, 33 (5): 687- 693.
doi: 10.1016/0956-716X(95)00235-N
GAO Y H , LIU G , SUN J . Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy[J]. Acta Metall Sinica, 2021, 57 (2): 129- 149.
19
LI H , BIN J , LIU J , et al. Precipitation evolution and coarsening resistance at 400 ℃ of Al microalloyed with Zr and Er[J]. Scripta Materialia, 2012, 67 (1): 73- 76.
doi: 10.1016/j.scriptamat.2012.03.026
20
BELOV N A , ALABIN A N , ESKIN D G , et al. Optimization of hardening of Al-Zr-Sc cast alloys[J]. Journal of Materials Science, 2006, 41 (18): 5890- 5899.
doi: 10.1007/s10853-006-0265-7
21
PAN S , QIAN F , LI C , et al. Synergistic strengthening by nano-sized α-Al(Mn, Fe)Si and Al3Zr dispersoids in a heat-resistant Al-Mn-Fe-Si-Zr alloy[J]. Materials Science and Engineering: A, 2021, 819, 141460.
doi: 10.1016/j.msea.2021.141460
22
蒙多尔福. 铝合金的组织与性能[M]. 北京: 冶金工业出版社, 1988.
22
MONDOLFO L F . Microstructure and mechanical property of Al alloys[M]. Beijing: Metallurgical Industry Press, 1988.
ZHU Q F , LI F , WANG J , et al. Effects of cooling rate on solidification structure of Al-5Zr master alloys[J]. Chinese J Nonfer Metals, 2017, 27 (1): 8- 14.
XIE Y H , YANG S J , DAI S L , et al. Application of element Zr in aluminum alloys[J]. J Aero Mater, 2002, 22 (4): 56- 61.
doi: 10.3969/j.issn.1005-5053.2002.04.011
25
KNIPLING K E , DUNAND D C , SEIDMAN D N . Criteria for developing castable, creep-resistant aluminum-based alloys-a review[J]. Zeitschrift Für Metallkunde, 2006, 97 (3): 246- 265.
doi: 10.3139/146.101249
26
JIANG S , WANG H , WU Y , et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544 (460/464): 1- 12.
LU Z P , JIANG S H , HE J Y , et al. Second phase strengthening in advanced metal materials[J]. Acta Metall Sinica, 2016, 52 (10): 1183- 1198.
doi: 10.11900/0412.1961.2016.00383
28
PAN S , ZHOU X , CHEN K , et al. In-situ nanoparticles: a new strengthening method for metallic structural material[J]. Applied Sciences, 2018, 8 (12): 1- 20.
KNIPLING K E. Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates[D]. Evanston: Northwestern University, 2006.
31
MARUMO T , FUJIKAWA S , HIRONO K . Diffusion of zirconium in aluminum[J]. Journal of the Japan Institute of Light Metals, 1973, 23 (1): 17- 25.
32
WEN S P , GAO K Y , LI Y , et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy[J]. Scripta Materialia, 2011, 65 (7): 592- 595.
doi: 10.1016/j.scriptamat.2011.06.033
33
HORI S , SAJI S , KOBAYASHI T . Long time aging behavior of Al-0.22%Zr alloy[J]. Journal of the Japan Institute of Light Metals, 1973, 37, 1134- 1138.
34
KNIPLING K E , SEIDMAN D N , DUNAND D C . Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys[J]. Acta Materialia, 2011, 59 (3): 943- 954.
doi: 10.1016/j.actamat.2010.10.017
35
ZEDALIS M S , FINE M E . Precipitation and Oswald ripening in dilute Al base-Zr-V alloys[J]. Metallurgical Transactions A, 1986, 17 (12): 2187- 2198.
doi: 10.1007/BF02645917
36
LIFSHITZ I M , SLYOZOV V V . The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19 (1/2): 35- 50.
37
WAGNER C . Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung)[J]. Zeitschrift Für Elektrochemie, 1961, 65 (7/8): 581- 591.
38
LEFEBVRE W , MASQUELIER N , HOUARD J , et al. Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions[J]. Scripta Materialia, 2014, 70 (1): 43- 46.
39
PAN S , CHEN X , ZHOU X , et al. Micro-alloying effect of Er and Zr on microstructural evolution and yield strength of Al-3Cu (wt.%) binary alloys[J]. Materials Science and Engineering: A, 2020, 790, 139391.
doi: 10.1016/j.msea.2020.139391
40
GUO Z , ZHAO G , CHEN X G . Effects of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy[J]. Materials Characterization, 2015, 102, 122- 130.
doi: 10.1016/j.matchar.2015.02.016
41
HOMMA T , MOODY M P , SAXEY D W , et al. Effect of Sn addition in preprecipitation stage in Al-Cu alloys: a correlative transmission electron microscopy and atom probe tomography study[J]. Metallurgical and Materials Transactions A, 2012, 43 (7): 2192- 2202.
doi: 10.1007/s11661-012-1111-y
42
ZHAO H , CHEN Y , GAULT B , et al. (Al, Zn)3Zr dispersoids assisted η' precipitation in an Al-Zn-Mg-Cu-Zr alloy[J]. Materialia, 2020, 10, 100641.
doi: 10.1016/j.mtla.2020.100641
43
BISWAS A , SIEGEL D J , WOLVERTON C , et al. Precipitates in Al-Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation[J]. Acta Materialia, 2011, 59 (15): 6187- 6204.
doi: 10.1016/j.actamat.2011.06.036
44
CHEN B A , LIU G , WANG R H , et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys[J]. Acta Materialia, 2013, 61 (5): 1676- 1690.
doi: 10.1016/j.actamat.2012.11.043
45
RIDDLE Y W. Al3(Sc, Zr) dispersoids in aluminum alloys: coarsening and recrystallization control[D]. Atlanta: Georgia Institute of Technology, 2000.
46
RØYSET J , RYUM N . Scandium in aluminium alloys[J]. International Materials Reviews, 2005, 50 (1): 19- 44.
doi: 10.1179/174328005X14311
47
TOLLEY A , RADMILOVIC V , DAHMEN U . Segregation in Al3(Sc, Zr) precipitates in Al-Sc-Zr alloys[J]. Scripta Materialia, 2005, 52 (7): 621- 625.
doi: 10.1016/j.scriptamat.2004.11.021
48
DORIN T, RAMAJAYAM M, MESTER K, et al. The effect of scandium and zirconium on the microstructure, mechanical properties and formability of a model Al-Cu alloy[C]//Light metals 2018. Cham, Switerland: Springer Nature, 2018.
49
LI H , CAO F , GUO S , et al. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition[J]. Journal of Alloys and Compounds, 2017, 691, 482- 488.
doi: 10.1016/j.jallcom.2016.08.255
YAN H , LI H , SI Y , et al. Effect of trace Sc and Zr and thermal mechanical treatment on microstructure and properties of Al-Mg-Si alloy[J]. Heat Treatment of Metals, 2017, 42 (11): 7- 13.
LIU Y , HUANG J W , DENG Y , et al. Effect of combined additions of Sc and Zr on quench sensitivity of Al-Zn-Mg alloy[J]. Heat Treatment of Metals, 2018, 43 (11): 20- 25.
52
KARNESKY R A , VAN DALEN M E , DUNAND D C , et al. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al-0.08 at. %Sc alloy[J]. Scripta Materialia, 2006, 55 (5): 437- 440.
doi: 10.1016/j.scriptamat.2006.05.021
53
KRUG M E , WERBER A , DUNAND D C , et al. Core-shell nanoscale precipitates in Al-0.06 at.% Sc microalloyed with Tb, Ho, Tm or Lu[J]. Acta Materialia, 2010, 58 (1): 134- 145.
doi: 10.1016/j.actamat.2009.08.074
54
Van DALEN M E , DUNAND D C , SEIDMAN D N . Nanoscale precipitation and mechanical properties of Al-0.06 at.% Sc alloys microalloyed with Yb or Gd[J]. Journal of Materials Science, 2006, 41 (23): 7814- 7823.
doi: 10.1007/s10853-006-0664-9
55
Van DALEN M E , DUNAND D C , SEIDMAN D N . Microstructural evolution and creep properties of precipitation- strengthened Al-0.06Sc-0.02Gd and Al-0.06Sc-0.02Yb (at.%) alloys[J]. Acta Materialia, 2011, 59 (13): 5224- 5237.
doi: 10.1016/j.actamat.2011.04.059
56
WEN S P , GAO K Y , HUANG H , et al. Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al-Zr alloys[J]. Journal of Alloys and Compounds, 2014, 599, 65- 70.
doi: 10.1016/j.jallcom.2014.02.065
57
De LUCA A , DUNAND D C , SEIDMAN D N . Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content[J]. Acta Materialia, 2018, 144, 80- 91.
doi: 10.1016/j.actamat.2017.10.040
58
WEN S P , WANG W , ZHAO W H , et al. Precipitation hardening and recrystallization behavior of Al-Mg-Er-Zr alloys[J]. Journal of Alloys and Compounds, 2016, 687, 143- 151.
doi: 10.1016/j.jallcom.2016.06.045
59
ZHANG Y , ZHOU W , GAO H , et al. Precipitation evolution of Al-Zr-Yb alloys during isochronal aging[J]. Scripta Materialia, 2013, 69 (6): 477- 480.
doi: 10.1016/j.scriptamat.2013.06.003
60
GAO H , WANG Y , WANG J , et al. Aging and recrystallization behavior of quaternary Al-0.25Zr-0.03Y-0.10Si alloy[J]. Materials Science and Engineering: A, 2019, 763, 138160.
doi: 10.1016/j.msea.2019.138160
61
WEN S P , XING Z B , HUANG H , et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2009, 516 (1/2): 42- 49.
62
WU H , WEN S P , HUANG H , et al. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science and Engineering: A, 2017, 689, 313- 322.
doi: 10.1016/j.msea.2017.02.071
63
LI J , CHEN S , LI F , et al. Synergy effect of Si addition and pre-straining on microstructure and properties of Al-Cu-Mg alloys with a medium Cu/Mg ratio[J]. Materials Science and Engineering: A, 2019, 767, 138429.
doi: 10.1016/j.msea.2019.138429
64
MUGGERUD A M F , MØRTSELL E A , LI Y J , et al. Dispersoid strengthening in AA3×××alloys with varying Mn and Si content during annealing at low temperatures[J]. Materials Science and Engineering: A, 2013, 567, 21- 28.
doi: 10.1016/j.msea.2013.01.004
65
SATO T , KAMIO A , LORIMER G W . Effects of Si and Ti additions on the nucleation and phase stability of the L12-type Al3Zr phase in Al-Zr alloys[J]. Materials Science Forum, 1996, 217/222, 895- 900.
doi: 10.4028/www.scientific.net/MSF.217-222.895
66
WOLVERTON C . Solute-vacancy binding in aluminum[J]. Acta Materialia, 2007, 55 (17): 5867- 5872.
doi: 10.1016/j.actamat.2007.06.039
67
De LUCA A , DUNAND D C , SEIDMAN D N . Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio[J]. Acta Materialia, 2016, 119, 35- 42.
doi: 10.1016/j.actamat.2016.08.018
68
DU G , DENG J , WANG Y , et al. Precipitation of (Al, Si)3Sc in an Al-Sc-Si alloy[J]. Scripta Materialia, 2009, 61 (5): 532- 535.
doi: 10.1016/j.scriptamat.2009.05.014
69
LIU J Z , GHOSH G , Van De WALLE A , et al. Transferable force-constant modeling of vibrational thermodynamic properties in fcc-based Al-TM (TM=Ti, Zr, Hf) alloys[J]. Physical Review B, 2007, 75 (10): 1- 15.
70
ROBSON J D , PRANGNELL P B . Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys[J]. Acta Materialia, 2001, 49 (4): 599- 613.
doi: 10.1016/S1359-6454(00)00351-7
71
ROBSON J D . Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model[J]. Materials Science and Engineering: A, 2002, 338 (1/2): 219- 229.
72
MICHI RA , SISCO K , BAHL S , et al. Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al-Cu-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2022, 840, 142928.
doi: 10.1016/j.msea.2022.142928
73
MIKHAYLOVSKAYA A V , MOCHUGOVSKIY A G , LEVCHENKO V S , et al. Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 139, 30- 37.
doi: 10.1016/j.matchar.2018.02.030
74
FADAYOMI O , CLARK R , THOLE V , et al. Investigation of Al-Zn-Zr and Al-Zn-Ni Alloys for high electrical conductivity and strength application[J]. Materials Science and Engineering: A, 2019, 743, 785- 797.
doi: 10.1016/j.msea.2018.11.111
75
JIA Z H , COUZINIE J P , CHERDOUDI N , et al. Precipitation behaviour of Al3Zr precipitate in Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (8): 1860- 1865.
doi: 10.1016/S1003-6326(11)61398-8
76
ROBSON J D , PRANGNELL P B . Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys[J]. Materials Science and Engineering: A, 2003, 352 (1/2): 240- 250.
LUO X F , ZHA X Q , XIA S L . Research progress of 2××× series aviation aluminum alloys[J]. Light Alloy Fabric Tech, 2018, 46 (9): 17- 25.
78
YANG Q , DENG Y , YANG M , et al. Effect of Al3Zr particles on hot-compression behavior and processing map for Al-Cu-Li based alloys at elevated temperatures[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (4): 872- 882.
doi: 10.1016/S1003-6326(20)65261-X
79
LAM D F , MENZEMER C C , SRIVATSAN T S . A study to evaluate and understand the response of aluminum alloy 2026 subjected to tensile deformation[J]. Materials & Design, 2010, 31 (1): 166- 175.
80
MONDOL S , KASHYAP S , KUMAR S , et al. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route[J]. Materials Science and Engineering: A, 2018, 732, 157- 166.
doi: 10.1016/j.msea.2018.07.003
81
ROUXEL B, MESTER K, VAHID A, et al. Influence of the Al3(Sc, Zr) dispersoids and the stretching on the natural ageing behavior of a binary Al-4 wt%Cu alloys[C]//Light Metals 2018. Chem, Switzerlard: Springer International Publishing, 2018.
82
MAKINENI S K , SUGATHAN S , MEHER S , et al. Enhancing elevated temperature strength of copper containing Al alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them[J]. Scientific Reports, 2017, 7 (1): 1- 9.
doi: 10.1038/s41598-016-0028-x
83
MONDOL S , MAKINENI S K , KUMAR S , et al. Enhancement of high temperature strength of 2219 alloys through small additions of Nb and Zr and a novel heat treatment[J]. Metallurgical and Materials Transactions A, 2018, 49 (7): 3047- 3057.
doi: 10.1007/s11661-018-4614-3
84
BAI S , LIU Z , LI Y , et al. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er[J]. Materials Science and Engineering: A, 2010, 527 (7/8): 1806- 1814.
85
POPLAWSKY J D , MILLIGAN B K , ALLARD L F , et al. The synergistic role of Mn and Zr/Ti in producing θ'/L12 co-precipitates in Al-Cu alloys[J]. Acta Materialia, 2020, 194, 577- 586.
doi: 10.1016/j.actamat.2020.05.043
86
SHIN D , SHYAM A , LEE S , et al. Solute segregation at the Al/θ'-Al2Cu interface in Al-Cu alloys[J]. Acta Materialia, 2017, 141, 327- 340.
doi: 10.1016/j.actamat.2017.09.020
87
SHOWER P , MORRIS J R , SHIN D , et al. Temperature-dependent stability of θ'-Al2Cu precipitates investigated with phase field simulations and experiments[J]. Materialia, 2019, 5, 100185.
doi: 10.1016/j.mtla.2018.100185
88
SHYAM A , ROY S , SHIN D , et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation[J]. Materials Science and Engineering: A, 2019, 765, 138279.
doi: 10.1016/j.msea.2019.138279
89
LI Y J , MUGGERUD A M F , OLSEN A , et al. Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA3003 alloy[J]. Acta Materialia, 2012, 60 (3): 1004- 1014.
doi: 10.1016/j.actamat.2011.11.003
90
ZHANG J , DING D , ZHANG W , et al. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn based alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (12): 3872- 3878.
doi: 10.1016/S1003-6326(14)63545-7
91
RAZAZ G , CARLBERG T . Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr[J]. Metallurgical and Materials Transactions A, 2019, 50 (8): 3842- 3854.
doi: 10.1007/s11661-019-05290-1
92
VLACH M , CIZEK J , MELIKHOVA O , et al. Early stages of precipitation process in Al-(Mn-)Sc-Zr alloy characterized by positron annihilation[J]. Metallurgical and Materials Transactions A, 2015, 46 (4): 1556- 1564.
doi: 10.1007/s11661-015-2767-x
93
LI Z , ZHANG Z , CHEN X G . Improvement in the mechanical properties and creep resistance of Al-Mn-Mg 3004 alloy with Sc and Zr addition[J]. Materials Science and Engineering: A, 2018, 729, 196- 207.
doi: 10.1016/j.msea.2018.05.055
94
FARKOOSH A R , DUNAND D C , SEIDMAN D N . Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy[J]. Acta Materialia, 2021, 219, 117268.
doi: 10.1016/j.actamat.2021.117268
ZHANG L H , YAN L Z , LI Z H , et al. Effect of annealing on properties and surface quality of Zr-bearing 5182 alloy[J]. Aluminium Fabrication, 2017, 235 (2): 43- 47.
doi: 10.3969/j.issn.1005-4898.2017.02.09
96
ENGLER O , MILLER-JUPP S . Control of second-phase particles in the Al-Mg-Mn alloy AA5083[J]. Journal of Alloys and Compounds, 2016, 689, 998- 1010.
doi: 10.1016/j.jallcom.2016.08.070
97
ENGLER O , KUHNKE K , HASENCLEVER J . Development of intermetallic particles during solidification and homogenization of two AA5××× series Al-Mg alloys with different Mg contents[J]. Journal of Alloys and Compounds, 2017, 728, 669- 681.
doi: 10.1016/j.jallcom.2017.09.060
98
YIN Z , PAN Q , ZHANG Y , et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J]. Materials Science and Engineering: A, 2000, 280 (1): 151- 155.
doi: 10.1016/S0921-5093(99)00682-6
99
MOCHUGOVSKIY A G , TABACHKOVA N Y , GHAYOUMABADI M E , et al. Joint effect of quasicrystalline icosahedral and L12-structured phases precipitation on the grain structure and mechanical properties of aluminum-based alloys[J]. Journal of Materials Science and Technology, 2021, 87, 196- 206.
doi: 10.1016/j.jmst.2021.01.055
100
ZHANG Y , GU J , TIAN Y , et al. Microstructural evolution and mechanical property of Al-Zr and Al-Zr-Y alloys[J]. Materials Science and Engineering: A, 2014, 616, 132- 140.
doi: 10.1016/j.msea.2014.08.017
XIE Z Q. Study on microstructure evolution and its effect on mechanical properties and hardenability of large-size spray formed 7055 alloy[D]. Chongqing: Chongqing University, 2020.
102
TSIVOULAS D , ROBSON J D . Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys[J]. Acta Materialia, 2015, 93, 73- 86.
doi: 10.1016/j.actamat.2015.03.057
103
BO H , LIU L B , JIN Z P . Thermodynamic analysis of Al-Sc, Cu-Sc and Al-Cu-Sc system[J]. Journal of Alloys and Compounds, 2010, 490 (1/2): 318- 325.
104
De LUCA A , SEIDMAN D N , DUNAND D C . Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys[J]. Acta Materialia, 2019, 165, 1- 14.
doi: 10.1016/j.actamat.2018.11.031
105
DU Y , CHANG Y A , HUANG B , et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation[J]. Materials Science and Engineering: A, 2003, 363 (1/2): 140- 151.
106
CASSELL A M , ROBSON J D , RACE C P , et al. Dispersoid composition in zirconium containing Al-Zn-Mg-Cu (AA7010) aluminium alloy[J]. Acta Materialia, 2019, 169, 135- 146.
doi: 10.1016/j.actamat.2019.02.047