Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 17-33    DOI: 10.11868/j.issn.1001-4381.2022.000087
  铝合金专栏 本期目录 | 过刊浏览 | 高级检索 |
锆微合金化增强铝合金的研究进展
潘士伟1, 王自东1,*(), 陈晓华2, 王艳林1, 陈凯旋1, 朱谕至1
1 北京科技大学 材料科学与工程学院,北京 100083
2 北京科技大学 新金属材料国家重点实验室,北京 100083
Research progress in Zr-microalloying strengthened aluminum alloys
Shiwei PAN1, Zidong WANG1,*(), Xiaohua CHEN2, Yanlin WANG1, Kaixuan CHEN1, Yuzhi ZHU1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1162 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

锆(Zr)元素是铝合金中研究较为深入、实际应用较为广泛的微合金元素之一。由于Zr在铝中具有低的固态扩散速率且可形成低密度、高熔点、低界面错配度的Al3Zr弥散相, 因此合金展现出高温下服役的潜力。然而, Al3Zr粒子的弥散强化效果主要受到粒子低数量密度或体积分数的制约; 此外, 多元合金体系凝固、变形、热处理过程中多组元间交互作用复杂, Al3Zr弥散强化与各体系中本征相强化作用往往难以兼得, 上述问题均对合金的力学强度造成了不利的影响。本文综合近年来的相关报道, 对含Zr铝合金中Zr的存在形式、析出和粗化行为以及强化机制进行了概述; 简要介绍了复合微合金化促进Al3Zr析出机理与最新研究结果; 对某些体系铝合金中Zr微合金化的应用进行了归纳与总结, 结合当前新型耐热铝基合金发展的新趋势, 指出铝合金内Zr的微量添加对调控微结构、提升室温和高温强度的重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘士伟
王自东
陈晓华
王艳林
陈凯旋
朱谕至
关键词 铝合金Al3Zr弥散强化微合金化析出    
Abstract

Zr is one of the most deeply investigated and widely used microalloying elements. The low diffusivity of Zr and the formation of thermal-stable Al3Zr dispersoids with the properties of low density, high melting temperature and low interface misfit in Al matrix, making Zr owing a broad prospect of application in developing heat-resistant Al alloys. However, strengthening by Al3Zr has been limited by either low number density or low volume fraction. In addition, the interaction among multiple components is very complex in multi-component Al alloys during solidification, deformation and heat treatment, and it is very difficult to achieve a good combination in strengthening of Al3Zr with the intrinsic phase of each system. In this review, the existing form, the precipitation and coarsening behavior, and the strengthening mechanism of Zr element in Zr-containing Al alloys were summarized. The mechanism of complex microalloying with multiple elements on promoting Al3Zr dispersion was briefly introduced. Finally, the effects of Zr addition on several series of Al-based alloys were summarized. In sum, microalloying with Zr is of great significance for regulating microstructure and improving room temperature/high temperature strength in Al alloys.

Key wordsaluminum alloy    Al3Zr    dispersion strengthening    microalloying    precipitation
收稿日期: 2022-01-28      出版日期: 2022-08-16
中图分类号:  TG146.2+1  
基金资助:博士后国际交流计划引进项目(YJ20200248);国家自然科学基金面上项目(52071012);北京科技大学专项人才经费资助项目(00007490)
通讯作者: 王自东     E-mail: wangzd@mater.ustb.edu.cn
作者简介: 王自东(1964—),男,教授,博士,研究方向:金属材料强韧化,联系地址:北京市海淀区学院路30号北京科技大学主楼401室(100083),E-mail: wangzd@mater.ustb.edu.cn
引用本文:   
潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
Shiwei PAN, Zidong WANG, Xiaohua CHEN, Yanlin WANG, Kaixuan CHEN, Yuzhi ZHU. Research progress in Zr-microalloying strengthened aluminum alloys. Journal of Materials Engineering, 2022, 50(8): 17-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000087      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/17
Fig.1  二元Al-Zr合金铸造相图(近铝端)[20]
Fig.2  Al3Zr弥散相内部的反相畴界
(a)TEM dark-field images documenting coarsening of L12-Al3Zr at 425 ℃, and the appearance of APB during aging[35]; (b)3D atomic model of the Al3Zr-L12 sheared precipitate showing the successive glide planes and the sequence of shears(the corresponding projection along [001] is shown in an inset at each step)[38]
Fig.3  Al3Zr协助MgZn2形核原子示意图[42]
(a)homogeneous distribution of solutes; (b)Zn partitioning into Al3Zr dispersoids after solution heat treatment; (c)solute segregation to the interfaces of L12 dispersoids in the initial state of aging; (d)L12 dispersoids assisted η′ formation during aging
Fig.4  Al3Zr粒子的析出行为模拟
(a)equilibrium Al-rich Al-Zr binary phase diagram with metastable Al3Zr(L12) solvus calculated by ab-initio calculations[14]; predicted number density and mean radius as a function of the distance between dendrite edge and center(b), Zr concentration after 480 ℃/24 h homogenization(c)[70]
Fig.5  Al3(Sc, Zr)(a)[3]和Al3(Nb, Zr)(b)[82-83]核-壳结构粒子对θ′相的异质形核作用
Fig.6  Zr元素偏聚对析出相热稳定性的影响[85]
(a)hardness data for the as-aged and heat-treated at temperatures ranging between 200 ℃ and 350 ℃ (200 h exposure time at each temperature), corresponding SEM-BSE figures displaying the size/density/distribution of Al2Cu precipitates; (b)APT 2D contour plots of a precipitate cross section for an ACMZ alloy exposed to 350 ℃ for 2000 h
Fig.7  Zr微量添加对一些3×××合金组织/性能的影响
(a)precipitation of α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA3003 alloy[89]; (b)enhanced precipitation behaviour of α in 3003 alloy with high Si content[64]; (c)hardening effect caused by Al3(Sc, Zr) particles in an Al-Mn-Sc-Zr alloy[92]; (d)bright-field and center-dark-field TEM images showing both α- and Al3(Sc, Zr) dispersoids in an AA3004 alloy with Sc and Zr additions[93]
1 ROBSON J D , ENGLER O , SIGLI C , et al. Advances in microstructural understanding of wrought aluminum alloys[J]. Metallurgical and Materials Transactions A, 2020, 51 (9): 4377- 4389.
doi: 10.1007/s11661-020-05908-9
2 高一涵, 刘刚, 孙军. 铝合金析出强化颗粒的微合金化调控[J]. 中国材料进展, 2019, 38 (3): 231- 241.
2 GAO Y H , LIU G , SUN J . Tailoring the strengthening particles in Al alloys by microalloying[J]. Materials China, 2019, 38 (3): 231- 241.
3 DORIN T , RAMAJAYAM M , LAMB J , et al. Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys[J]. Materials Science and Engineering: A, 2017, 707, 58- 64.
doi: 10.1016/j.msea.2017.09.032
4 HE Y , ZHANG X , YOU J . Effects of minor contents of Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2006, 16, 1228- 1235.
doi: 10.1016/S1003-6326(06)60406-8
5 赵明琦. 微合金化Al-Cu-(Zr, Ti, V) 铸造合金组织和性能及Al3Zr稳定性研究[D]. 重庆: 重庆大学, 2019.
5 ZHAO M Q. Study of microstructure and mechanical properties and stability of Al3Zr in microalloyed Al-Cu-(Zr, Ti, V) cast alloy[D]. Chongqing: Chongqing University, 2019.
6 LIU W , XIAO W , XU C , et al. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy[J]. Materials Science and Engineering: A, 2017, 693, 93- 100.
doi: 10.1016/j.msea.2017.03.097
7 NES E , BILLDAL H . The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution[J]. Acta Metallurgica, 1977, 25 (9): 1039- 1046.
doi: 10.1016/0001-6160(77)90133-X
8 NES E . Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloys[J]. Acta Metallurgica, 1972, 20 (4): 499- 506.
doi: 10.1016/0001-6160(72)90005-3
9 NES E , BILLDAL H . Non-equilibrium solidification of hyperperitetic Al-Zr alloys[J]. Acta Metallurgica, 1977, 25 (9): 1031- 1037.
doi: 10.1016/0001-6160(77)90132-8
10 RYUM N . Precipitation and recrystallization in an Al-0.5 wt.%Zr alloy[J]. Acta Metallurgica, 1969, 17 (3): 269- 278.
doi: 10.1016/0001-6160(69)90067-4
11 RYSTAD S , RYUM N . A metallographical investigation of precipitation and recrystallization process in an Al-Zr alloy[J]. Aluminium, 1977, 53 (3): 193- 195.
12 YOSHIDA H , BAHA Y . The role of zirconium to improve strength and stress-corrosion resistance of Al-Zn-Mg and Al-Zn-Mg-Cu alloys[J]. Transactions of the Japan Insititute of Metals, 1982, 23 (10): 620- 630.
doi: 10.2320/matertrans1960.23.620
13 HORNBOGEN E , STARKE E A . Theory assisted design of high strength low alloy aluminium[J]. Acta Metallurgica Materialia, 1993, 41 (1): 1- 16.
doi: 10.1016/0956-7151(93)90334-O
14 KNIPLING K E , DUNAND D C , SEIDMAN D N . Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys[J]. Metallurgical and Materials Transactions A, 2007, 38 (10): 2552- 2563.
doi: 10.1007/s11661-007-9283-6
15 KNIPLING K E , KARNESKY R A , LEE C P , et al. Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at.%) alloys during isochronal aging[J]. Acta Materialia, 2010, 58 (15): 5184- 5195.
doi: 10.1016/j.actamat.2010.05.054
16 KNIPLING K E , DUNAND D C , SEIDMAN D N . Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600 ℃[J]. Acta Materialia, 2008, 56 (6): 1182- 1195.
doi: 10.1016/j.actamat.2007.11.011
17 CHUNG S C , HAN S Z , LEE H M O , et al. Coarsening phenomenon of L12 precipitates in rapidly solidified Al-3at%(Ti, V, Zr) system[J]. Scripta Metallurgica et Materiala, 1995, 33 (5): 687- 693.
doi: 10.1016/0956-716X(95)00235-N
18 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57 (2): 129- 149.
18 GAO Y H , LIU G , SUN J . Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy[J]. Acta Metall Sinica, 2021, 57 (2): 129- 149.
19 LI H , BIN J , LIU J , et al. Precipitation evolution and coarsening resistance at 400 ℃ of Al microalloyed with Zr and Er[J]. Scripta Materialia, 2012, 67 (1): 73- 76.
doi: 10.1016/j.scriptamat.2012.03.026
20 BELOV N A , ALABIN A N , ESKIN D G , et al. Optimization of hardening of Al-Zr-Sc cast alloys[J]. Journal of Materials Science, 2006, 41 (18): 5890- 5899.
doi: 10.1007/s10853-006-0265-7
21 PAN S , QIAN F , LI C , et al. Synergistic strengthening by nano-sized α-Al(Mn, Fe)Si and Al3Zr dispersoids in a heat-resistant Al-Mn-Fe-Si-Zr alloy[J]. Materials Science and Engineering: A, 2021, 819, 141460.
doi: 10.1016/j.msea.2021.141460
22 蒙多尔福. 铝合金的组织与性能[M]. 北京: 冶金工业出版社, 1988.
22 MONDOLFO L F . Microstructure and mechanical property of Al alloys[M]. Beijing: Metallurgical Industry Press, 1988.
23 朱庆丰, 李飞, 王嘉, 等. 冷却速率对Al-5Zr中间合金凝固组织的影响[J]. 中国有色金属学报, 2017, 27 (1): 8- 14.
23 ZHU Q F , LI F , WANG J , et al. Effects of cooling rate on solidification structure of Al-5Zr master alloys[J]. Chinese J Nonfer Metals, 2017, 27 (1): 8- 14.
24 谢优华, 杨守杰, 戴圣龙, 等. 锆元素在铝合金中的应用[J]. 航空材料学报, 2002, 22 (4): 56- 61.
doi: 10.3969/j.issn.1005-5053.2002.04.011
24 XIE Y H , YANG S J , DAI S L , et al. Application of element Zr in aluminum alloys[J]. J Aero Mater, 2002, 22 (4): 56- 61.
doi: 10.3969/j.issn.1005-5053.2002.04.011
25 KNIPLING K E , DUNAND D C , SEIDMAN D N . Criteria for developing castable, creep-resistant aluminum-based alloys-a review[J]. Zeitschrift Für Metallkunde, 2006, 97 (3): 246- 265.
doi: 10.3139/146.101249
26 JIANG S , WANG H , WU Y , et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544 (460/464): 1- 12.
27 吕昭平, 蒋虽合, 何骏阳, 等. 先进金属材料的第二相强化[J]. 金属学报, 2016, 52 (10): 1183- 1198.
doi: 10.11900/0412.1961.2016.00383
27 LU Z P , JIANG S H , HE J Y , et al. Second phase strengthening in advanced metal materials[J]. Acta Metall Sinica, 2016, 52 (10): 1183- 1198.
doi: 10.11900/0412.1961.2016.00383
28 PAN S , ZHOU X , CHEN K , et al. In-situ nanoparticles: a new strengthening method for metallic structural material[J]. Applied Sciences, 2018, 8 (12): 1- 20.
29 Mineralprices. com. Rare earth metals[EB/OL]. (2019-12-15)[2019-12-15]. Http://Mineralprices.Com.
30 KNIPLING K E. Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates[D]. Evanston: Northwestern University, 2006.
31 MARUMO T , FUJIKAWA S , HIRONO K . Diffusion of zirconium in aluminum[J]. Journal of the Japan Institute of Light Metals, 1973, 23 (1): 17- 25.
32 WEN S P , GAO K Y , LI Y , et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy[J]. Scripta Materialia, 2011, 65 (7): 592- 595.
doi: 10.1016/j.scriptamat.2011.06.033
33 HORI S , SAJI S , KOBAYASHI T . Long time aging behavior of Al-0.22%Zr alloy[J]. Journal of the Japan Institute of Light Metals, 1973, 37, 1134- 1138.
34 KNIPLING K E , SEIDMAN D N , DUNAND D C . Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys[J]. Acta Materialia, 2011, 59 (3): 943- 954.
doi: 10.1016/j.actamat.2010.10.017
35 ZEDALIS M S , FINE M E . Precipitation and Oswald ripening in dilute Al base-Zr-V alloys[J]. Metallurgical Transactions A, 1986, 17 (12): 2187- 2198.
doi: 10.1007/BF02645917
36 LIFSHITZ I M , SLYOZOV V V . The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19 (1/2): 35- 50.
37 WAGNER C . Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung)[J]. Zeitschrift Für Elektrochemie, 1961, 65 (7/8): 581- 591.
38 LEFEBVRE W , MASQUELIER N , HOUARD J , et al. Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions[J]. Scripta Materialia, 2014, 70 (1): 43- 46.
39 PAN S , CHEN X , ZHOU X , et al. Micro-alloying effect of Er and Zr on microstructural evolution and yield strength of Al-3Cu (wt.%) binary alloys[J]. Materials Science and Engineering: A, 2020, 790, 139391.
doi: 10.1016/j.msea.2020.139391
40 GUO Z , ZHAO G , CHEN X G . Effects of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy[J]. Materials Characterization, 2015, 102, 122- 130.
doi: 10.1016/j.matchar.2015.02.016
41 HOMMA T , MOODY M P , SAXEY D W , et al. Effect of Sn addition in preprecipitation stage in Al-Cu alloys: a correlative transmission electron microscopy and atom probe tomography study[J]. Metallurgical and Materials Transactions A, 2012, 43 (7): 2192- 2202.
doi: 10.1007/s11661-012-1111-y
42 ZHAO H , CHEN Y , GAULT B , et al. (Al, Zn)3Zr dispersoids assisted η' precipitation in an Al-Zn-Mg-Cu-Zr alloy[J]. Materialia, 2020, 10, 100641.
doi: 10.1016/j.mtla.2020.100641
43 BISWAS A , SIEGEL D J , WOLVERTON C , et al. Precipitates in Al-Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation[J]. Acta Materialia, 2011, 59 (15): 6187- 6204.
doi: 10.1016/j.actamat.2011.06.036
44 CHEN B A , LIU G , WANG R H , et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys[J]. Acta Materialia, 2013, 61 (5): 1676- 1690.
doi: 10.1016/j.actamat.2012.11.043
45 RIDDLE Y W. Al3(Sc, Zr) dispersoids in aluminum alloys: coarsening and recrystallization control[D]. Atlanta: Georgia Institute of Technology, 2000.
46 RØYSET J , RYUM N . Scandium in aluminium alloys[J]. International Materials Reviews, 2005, 50 (1): 19- 44.
doi: 10.1179/174328005X14311
47 TOLLEY A , RADMILOVIC V , DAHMEN U . Segregation in Al3(Sc, Zr) precipitates in Al-Sc-Zr alloys[J]. Scripta Materialia, 2005, 52 (7): 621- 625.
doi: 10.1016/j.scriptamat.2004.11.021
48 DORIN T, RAMAJAYAM M, MESTER K, et al. The effect of scandium and zirconium on the microstructure, mechanical properties and formability of a model Al-Cu alloy[C]//Light metals 2018. Cham, Switerland: Springer Nature, 2018.
49 LI H , CAO F , GUO S , et al. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition[J]. Journal of Alloys and Compounds, 2017, 691, 482- 488.
doi: 10.1016/j.jallcom.2016.08.255
50 闫华, 李亨, 司媛, 等. 微量Sc、Zr及形变热处理对Al-Mg-Si合金组织与性能的影响[J]. 金属热处理, 2017, 42 (11): 7- 13.
50 YAN H , LI H , SI Y , et al. Effect of trace Sc and Zr and thermal mechanical treatment on microstructure and properties of Al-Mg-Si alloy[J]. Heat Treatment of Metals, 2017, 42 (11): 7- 13.
51 刘贇, 黄继武, 邓英, 等. 钪锆复合添加对Al-Zn-Mg合金淬火敏感性的影响[J]. 金属热处理, 2018, 43 (11): 20- 25.
51 LIU Y , HUANG J W , DENG Y , et al. Effect of combined additions of Sc and Zr on quench sensitivity of Al-Zn-Mg alloy[J]. Heat Treatment of Metals, 2018, 43 (11): 20- 25.
52 KARNESKY R A , VAN DALEN M E , DUNAND D C , et al. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al-0.08 at. %Sc alloy[J]. Scripta Materialia, 2006, 55 (5): 437- 440.
doi: 10.1016/j.scriptamat.2006.05.021
53 KRUG M E , WERBER A , DUNAND D C , et al. Core-shell nanoscale precipitates in Al-0.06 at.% Sc microalloyed with Tb, Ho, Tm or Lu[J]. Acta Materialia, 2010, 58 (1): 134- 145.
doi: 10.1016/j.actamat.2009.08.074
54 Van DALEN M E , DUNAND D C , SEIDMAN D N . Nanoscale precipitation and mechanical properties of Al-0.06 at.% Sc alloys microalloyed with Yb or Gd[J]. Journal of Materials Science, 2006, 41 (23): 7814- 7823.
doi: 10.1007/s10853-006-0664-9
55 Van DALEN M E , DUNAND D C , SEIDMAN D N . Microstructural evolution and creep properties of precipitation- strengthened Al-0.06Sc-0.02Gd and Al-0.06Sc-0.02Yb (at.%) alloys[J]. Acta Materialia, 2011, 59 (13): 5224- 5237.
doi: 10.1016/j.actamat.2011.04.059
56 WEN S P , GAO K Y , HUANG H , et al. Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al-Zr alloys[J]. Journal of Alloys and Compounds, 2014, 599, 65- 70.
doi: 10.1016/j.jallcom.2014.02.065
57 De LUCA A , DUNAND D C , SEIDMAN D N . Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content[J]. Acta Materialia, 2018, 144, 80- 91.
doi: 10.1016/j.actamat.2017.10.040
58 WEN S P , WANG W , ZHAO W H , et al. Precipitation hardening and recrystallization behavior of Al-Mg-Er-Zr alloys[J]. Journal of Alloys and Compounds, 2016, 687, 143- 151.
doi: 10.1016/j.jallcom.2016.06.045
59 ZHANG Y , ZHOU W , GAO H , et al. Precipitation evolution of Al-Zr-Yb alloys during isochronal aging[J]. Scripta Materialia, 2013, 69 (6): 477- 480.
doi: 10.1016/j.scriptamat.2013.06.003
60 GAO H , WANG Y , WANG J , et al. Aging and recrystallization behavior of quaternary Al-0.25Zr-0.03Y-0.10Si alloy[J]. Materials Science and Engineering: A, 2019, 763, 138160.
doi: 10.1016/j.msea.2019.138160
61 WEN S P , XING Z B , HUANG H , et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2009, 516 (1/2): 42- 49.
62 WU H , WEN S P , HUANG H , et al. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science and Engineering: A, 2017, 689, 313- 322.
doi: 10.1016/j.msea.2017.02.071
63 LI J , CHEN S , LI F , et al. Synergy effect of Si addition and pre-straining on microstructure and properties of Al-Cu-Mg alloys with a medium Cu/Mg ratio[J]. Materials Science and Engineering: A, 2019, 767, 138429.
doi: 10.1016/j.msea.2019.138429
64 MUGGERUD A M F , MØRTSELL E A , LI Y J , et al. Dispersoid strengthening in AA3×××alloys with varying Mn and Si content during annealing at low temperatures[J]. Materials Science and Engineering: A, 2013, 567, 21- 28.
doi: 10.1016/j.msea.2013.01.004
65 SATO T , KAMIO A , LORIMER G W . Effects of Si and Ti additions on the nucleation and phase stability of the L12-type Al3Zr phase in Al-Zr alloys[J]. Materials Science Forum, 1996, 217/222, 895- 900.
doi: 10.4028/www.scientific.net/MSF.217-222.895
66 WOLVERTON C . Solute-vacancy binding in aluminum[J]. Acta Materialia, 2007, 55 (17): 5867- 5872.
doi: 10.1016/j.actamat.2007.06.039
67 De LUCA A , DUNAND D C , SEIDMAN D N . Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio[J]. Acta Materialia, 2016, 119, 35- 42.
doi: 10.1016/j.actamat.2016.08.018
68 DU G , DENG J , WANG Y , et al. Precipitation of (Al, Si)3Sc in an Al-Sc-Si alloy[J]. Scripta Materialia, 2009, 61 (5): 532- 535.
doi: 10.1016/j.scriptamat.2009.05.014
69 LIU J Z , GHOSH G , Van De WALLE A , et al. Transferable force-constant modeling of vibrational thermodynamic properties in fcc-based Al-TM (TM=Ti, Zr, Hf) alloys[J]. Physical Review B, 2007, 75 (10): 1- 15.
70 ROBSON J D , PRANGNELL P B . Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys[J]. Acta Materialia, 2001, 49 (4): 599- 613.
doi: 10.1016/S1359-6454(00)00351-7
71 ROBSON J D . Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model[J]. Materials Science and Engineering: A, 2002, 338 (1/2): 219- 229.
72 MICHI RA , SISCO K , BAHL S , et al. Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al-Cu-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2022, 840, 142928.
doi: 10.1016/j.msea.2022.142928
73 MIKHAYLOVSKAYA A V , MOCHUGOVSKIY A G , LEVCHENKO V S , et al. Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 139, 30- 37.
doi: 10.1016/j.matchar.2018.02.030
74 FADAYOMI O , CLARK R , THOLE V , et al. Investigation of Al-Zn-Zr and Al-Zn-Ni Alloys for high electrical conductivity and strength application[J]. Materials Science and Engineering: A, 2019, 743, 785- 797.
doi: 10.1016/j.msea.2018.11.111
75 JIA Z H , COUZINIE J P , CHERDOUDI N , et al. Precipitation behaviour of Al3Zr precipitate in Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (8): 1860- 1865.
doi: 10.1016/S1003-6326(11)61398-8
76 ROBSON J D , PRANGNELL P B . Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys[J]. Materials Science and Engineering: A, 2003, 352 (1/2): 240- 250.
77 罗先甫, 查小琴, 夏申琳. 2×××系航空铝合金研究进展[J]. 轻合金加工技术, 2018, 46 (9): 17- 25.
77 LUO X F , ZHA X Q , XIA S L . Research progress of 2××× series aviation aluminum alloys[J]. Light Alloy Fabric Tech, 2018, 46 (9): 17- 25.
78 YANG Q , DENG Y , YANG M , et al. Effect of Al3Zr particles on hot-compression behavior and processing map for Al-Cu-Li based alloys at elevated temperatures[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (4): 872- 882.
doi: 10.1016/S1003-6326(20)65261-X
79 LAM D F , MENZEMER C C , SRIVATSAN T S . A study to evaluate and understand the response of aluminum alloy 2026 subjected to tensile deformation[J]. Materials & Design, 2010, 31 (1): 166- 175.
80 MONDOL S , KASHYAP S , KUMAR S , et al. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route[J]. Materials Science and Engineering: A, 2018, 732, 157- 166.
doi: 10.1016/j.msea.2018.07.003
81 ROUXEL B, MESTER K, VAHID A, et al. Influence of the Al3(Sc, Zr) dispersoids and the stretching on the natural ageing behavior of a binary Al-4 wt%Cu alloys[C]//Light Metals 2018. Chem, Switzerlard: Springer International Publishing, 2018.
82 MAKINENI S K , SUGATHAN S , MEHER S , et al. Enhancing elevated temperature strength of copper containing Al alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them[J]. Scientific Reports, 2017, 7 (1): 1- 9.
doi: 10.1038/s41598-016-0028-x
83 MONDOL S , MAKINENI S K , KUMAR S , et al. Enhancement of high temperature strength of 2219 alloys through small additions of Nb and Zr and a novel heat treatment[J]. Metallurgical and Materials Transactions A, 2018, 49 (7): 3047- 3057.
doi: 10.1007/s11661-018-4614-3
84 BAI S , LIU Z , LI Y , et al. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er[J]. Materials Science and Engineering: A, 2010, 527 (7/8): 1806- 1814.
85 POPLAWSKY J D , MILLIGAN B K , ALLARD L F , et al. The synergistic role of Mn and Zr/Ti in producing θ'/L12 co-precipitates in Al-Cu alloys[J]. Acta Materialia, 2020, 194, 577- 586.
doi: 10.1016/j.actamat.2020.05.043
86 SHIN D , SHYAM A , LEE S , et al. Solute segregation at the Al/θ'-Al2Cu interface in Al-Cu alloys[J]. Acta Materialia, 2017, 141, 327- 340.
doi: 10.1016/j.actamat.2017.09.020
87 SHOWER P , MORRIS J R , SHIN D , et al. Temperature-dependent stability of θ'-Al2Cu precipitates investigated with phase field simulations and experiments[J]. Materialia, 2019, 5, 100185.
doi: 10.1016/j.mtla.2018.100185
88 SHYAM A , ROY S , SHIN D , et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation[J]. Materials Science and Engineering: A, 2019, 765, 138279.
doi: 10.1016/j.msea.2019.138279
89 LI Y J , MUGGERUD A M F , OLSEN A , et al. Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA3003 alloy[J]. Acta Materialia, 2012, 60 (3): 1004- 1014.
doi: 10.1016/j.actamat.2011.11.003
90 ZHANG J , DING D , ZHANG W , et al. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn based alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (12): 3872- 3878.
doi: 10.1016/S1003-6326(14)63545-7
91 RAZAZ G , CARLBERG T . Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr[J]. Metallurgical and Materials Transactions A, 2019, 50 (8): 3842- 3854.
doi: 10.1007/s11661-019-05290-1
92 VLACH M , CIZEK J , MELIKHOVA O , et al. Early stages of precipitation process in Al-(Mn-)Sc-Zr alloy characterized by positron annihilation[J]. Metallurgical and Materials Transactions A, 2015, 46 (4): 1556- 1564.
doi: 10.1007/s11661-015-2767-x
93 LI Z , ZHANG Z , CHEN X G . Improvement in the mechanical properties and creep resistance of Al-Mn-Mg 3004 alloy with Sc and Zr addition[J]. Materials Science and Engineering: A, 2018, 729, 196- 207.
doi: 10.1016/j.msea.2018.05.055
94 FARKOOSH A R , DUNAND D C , SEIDMAN D N . Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy[J]. Acta Materialia, 2021, 219, 117268.
doi: 10.1016/j.actamat.2021.117268
95 张鲁辉, 闫丽珍, 李志辉, 等. 退火处理对Zr添加5182铝合金性能和表面质量的影响[J]. 铝加工, 2017, 235 (2): 43- 47.
doi: 10.3969/j.issn.1005-4898.2017.02.09
95 ZHANG L H , YAN L Z , LI Z H , et al. Effect of annealing on properties and surface quality of Zr-bearing 5182 alloy[J]. Aluminium Fabrication, 2017, 235 (2): 43- 47.
doi: 10.3969/j.issn.1005-4898.2017.02.09
96 ENGLER O , MILLER-JUPP S . Control of second-phase particles in the Al-Mg-Mn alloy AA5083[J]. Journal of Alloys and Compounds, 2016, 689, 998- 1010.
doi: 10.1016/j.jallcom.2016.08.070
97 ENGLER O , KUHNKE K , HASENCLEVER J . Development of intermetallic particles during solidification and homogenization of two AA5××× series Al-Mg alloys with different Mg contents[J]. Journal of Alloys and Compounds, 2017, 728, 669- 681.
doi: 10.1016/j.jallcom.2017.09.060
98 YIN Z , PAN Q , ZHANG Y , et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J]. Materials Science and Engineering: A, 2000, 280 (1): 151- 155.
doi: 10.1016/S0921-5093(99)00682-6
99 MOCHUGOVSKIY A G , TABACHKOVA N Y , GHAYOUMABADI M E , et al. Joint effect of quasicrystalline icosahedral and L12-structured phases precipitation on the grain structure and mechanical properties of aluminum-based alloys[J]. Journal of Materials Science and Technology, 2021, 87, 196- 206.
doi: 10.1016/j.jmst.2021.01.055
100 ZHANG Y , GU J , TIAN Y , et al. Microstructural evolution and mechanical property of Al-Zr and Al-Zr-Y alloys[J]. Materials Science and Engineering: A, 2014, 616, 132- 140.
doi: 10.1016/j.msea.2014.08.017
101 谢志强. 大规格喷射成形7055铝合金组织演化及其对力学性能和淬透性影响研究[D]. 重庆: 重庆大学, 2020.
101 XIE Z Q. Study on microstructure evolution and its effect on mechanical properties and hardenability of large-size spray formed 7055 alloy[D]. Chongqing: Chongqing University, 2020.
102 TSIVOULAS D , ROBSON J D . Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys[J]. Acta Materialia, 2015, 93, 73- 86.
doi: 10.1016/j.actamat.2015.03.057
103 BO H , LIU L B , JIN Z P . Thermodynamic analysis of Al-Sc, Cu-Sc and Al-Cu-Sc system[J]. Journal of Alloys and Compounds, 2010, 490 (1/2): 318- 325.
104 De LUCA A , SEIDMAN D N , DUNAND D C . Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys[J]. Acta Materialia, 2019, 165, 1- 14.
doi: 10.1016/j.actamat.2018.11.031
105 DU Y , CHANG Y A , HUANG B , et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation[J]. Materials Science and Engineering: A, 2003, 363 (1/2): 140- 151.
106 CASSELL A M , ROBSON J D , RACE C P , et al. Dispersoid composition in zirconium containing Al-Zn-Mg-Cu (AA7010) aluminium alloy[J]. Acta Materialia, 2019, 169, 135- 146.
doi: 10.1016/j.actamat.2019.02.047
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[3] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[4] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[5] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[6] 马海霞, 王太和, 赵玉洁, 王旭, 李嘉辰. MoS2/Ru异质结构的制备及其电催化析氢反应性能[J]. 材料工程, 2022, 50(4): 44-52.
[7] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[10] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[11] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[12] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[13] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[14] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[15] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn