Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (2): 1-14    DOI: 10.11868/j.issn.1001-4381.2022.000094
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于Ti3C2Tx材料在钠离子电池中的应用进展
曾敏, 陈淋, 李星, 王明珊()
西南石油大学 新能源与材料学院,成都 610500
Progress in application of Ti3C2Tx materials in sodium-ion batteries
Min ZENG, Lin CHEN, Xing LI, Mingshan WANG()
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(13611 KB)   HTML ( 25 )  
输出: BibTeX | EndNote (RIS)      
摘要 

MXene由于具有独特的层状结构、高电子导电性和丰富的表面化学特性,在储能、电磁干扰屏蔽、催化、医药等方面有广泛的应用前景。Ti3C2Tx作为最早发现的MXene材料,其固有的金属导电特征、宽层间距和丰富的表面官能团,引起了钠离子电池领域研究人员的关注。本文综述了近年来Ti3C2Tx基材料在钠离子电池中的研究进展。首先从Ti3C2Tx材料的制备展开,概述多层和少层两类Ti3C2Tx材料的结构与电化学特性。随后结合研究的应用趋势,总结两类Ti3C2Tx材料的层间距改性、掺杂改性、形貌调控等手段对其储钠行为的影响。同时也分析了两类Ti3C2Tx基复合材料应用于钠离子电池负极的结构设计思路,指出合理的结构设计对电池性能至关重要。最后对Ti3C2Tx基复合材料在钠离子电池领域中面临的问题和挑战提出了一些建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾敏
陈淋
李星
王明珊
关键词 二维材料MXeneTi3C2Tx钠离子电池复合材料    
Abstract

MXene has a wide application prospect in energy storage, electromagnetic interference shielding, catalysis, medicine and other fields due to its unique layered structure, high electronic conductivity and rich surface chemical properties.Ti3C2Tx, as the earliest discovered MXene material, has the possibility to achieve both high energy density and power density in the field of sodium ion batteries because of its inherent metal conductive characteristics, wide layer spacing and abundant surface functional groups, which is attracted by many researchers. Based on this, the research progress of Ti3C2Tx based materials in sodium ion batteries in recent years was reviewed in this paper. Firstly, the structure and electrochemical properties of Ti3C2Tx materials with multi-layer and few-layer were summarized by introducing the preparation of Ti3C2Tx. Then, combined with the application trend of the study, the influences of layer spacing modification, doping modification and morphology regulation on the sodium storage behavior of the two kinds of Ti3C2Tx materials were summarized. The structural design ideas of the two kinds of Ti3C2Tx based composites applied to the anode of the sodium ion battery were also analyzed. It was pointed out that the reasonable structural design is vital to the battery performance. Finally, some suggestions for the problems and challenges faced by Ti3C2Tx based composites in the field of sodium ion batteries were given.

Key wordstwo-dimensional material    MXene    Ti3C2Tx    sodium-ion battery    composites
收稿日期: 2022-02-14      出版日期: 2023-02-20
中图分类号:  TQ152  
基金资助:国家自然科学基金面上基金项目(52072322);四川省科技厅重点研发计划项目(2022YFG0294);四川省成都市国际科技合作项目(2019-GH02-00052-HZ)
通讯作者: 王明珊     E-mail: ustbwangmingshan@163.com
作者简介: 王明珊(1986—),女,副教授,博士,研究方向为电化学储能材料开发及应用,联系地址:四川省成都市新都区新都大道8号西南石油大学(610500),E-mail:ustbwangmingshan@163.com
引用本文:   
曾敏, 陈淋, 李星, 王明珊. 基于Ti3C2Tx材料在钠离子电池中的应用进展[J]. 材料工程, 2023, 51(2): 1-14.
Min ZENG, Lin CHEN, Xing LI, Mingshan WANG. Progress in application of Ti3C2Tx materials in sodium-ion batteries. Journal of Materials Engineering, 2023, 51(2): 1-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000094      或      http://jme.biam.ac.cn/CN/Y2023/V51/I2/1
Fig.1  Ti3C2Tx的结构与制备
(a)MAX相和MXene的结构[7];(b)从MAX相到少层MXene纳米片制备流程示意图[19];(c)Ti3AlC2(Ⅰ)、氢氟酸刻蚀手风琴状多层Ti3C2Tx(Ⅱ)、DMSO插层多层Ti3C2Tx(Ⅲ)与剥离后的Ti3C2Tx (Ⅳ)的XRD谱图[20];(d)氢氟酸刻蚀法所得的手风琴状多层Ti3C2Tx SEM图[21];(e)氟化锂/盐酸刻蚀法所得的块状多层Ti3C2Tx的SEM图[21];(f)单层与双层Ti3C2Tx的TEM图[22]
Fig.2  Ti3C2Tx基钠离子电池负极材料的设计策略
Fig.3  多层Ti3C2Tx的改性
(a)碱金属离子柱撑Ti3C2制备工艺示意谱图[31];(b)碱金属离子柱撑Ti3C2的XRD谱图[31];(c)S原子共价柱撑Ti3C2的XRD图[32]
Fig.4  硫族化合物/多层Ti3C2Tx复合材料的性能
(a)MoS2/Ti3C2Tx复合材料制备示意图[40];(b)MoS2/Ti3C2Tx复合材料的SEM图[40];(c)SnSe2/Ti3C2Tx复合材料的制备示意图[43];(d)SnSe2/Ti3C2Tx复合材料的循环性能[43]
Fig.5  碳/少层Ti3C2Tx复合材料
(a)rGO/Ti3C2Tx异质结构自支撑薄膜制备示意图[50];(b)HC-MX自支撑电极的制备示意图[51];(c)rGO/Ti3C2Tx异质结构的TEM图[50];(d)MXene@NCRib复合材料的SEM图[52]
Fig.6  金属硫族化合物/Ti3C2Tx复合材料的性能
(a)(CoSNP@NHC)@MXene复合材料的TEM图[65];(b)(CoSNP@NHC)@MXene复合材料的循环性能[65];(c)Sb2S3/Ti3C2Tx复合自支撑薄膜电极制备示意图[66];(d)Sb2S3/Ti3C2Tx复合自支撑薄膜的循环性能[66];(e)MX-H-MoS2@NC复合自支撑电极截面SEM图[67];(f)MX-H-MoS2@NC复合自支撑电极的循环性能[67]
Composite Sample Electrolyte Voltage window/V Electrochemical performance Reference
Carbon based composite Ti3C2Tx/CNT-SA 1 mol·L-1 NaClO4 in EC/PC with 5%(mass fraction, the same below)FEC 0.01-3 0.1 A·g-1, 175 mAh·g-1 after 100 cycles [70]
Freestanding-rGO/TiC 1 mol·L-1 NaClO4 in EC/DEC 0.01-3 1 A·g-1, 110 mAh·g-1 after 2000 cycles [71]
MXene/rGO heterostructured films 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-3 0.5 A·g-1, 220 mAh·g-1 after 100 cycles [50]
HC-MX-2∶1 film 1 mol·L-1 NaClO4 in EC/DEC 0.01-3 0.2 A·g-1, 273.2 mAh·g-1 after 1500 cycles [51]
MXene@NCRib 1 mol·L-1 NaClO4 in EC/DMC 0.01-3 1 A·g-1, 210.2 mAh·g-1 after 1000 cycles [52]
Alloy based composite TNDs/P 1 mol·L-1 NaClO4 in EC/DEC with 10%FEC 0.01-2 0.1 A·g-1, 400 mAh·g-1 after 150 cycles [54]
BP/Ti3C2 composite 1 mol·L-1 NaClO4 in EC/PC 0.01-3 0.1 A·g-1, 121 mAh·g-1 after 100 cycles [55]
Phosphorene/MXene 1 mol·L-1 NaClO4 in EC/PC 0.01-3 1 A·g-1, 298 mAh·g-1 after 1000 cycles [56]
PDDA-BP/Ti3C2 1 mol·L-1 NaClO4 in EC/DMC/EMC with 5%FEC 0.01-3 1 A·g-1, 658 mAh·g-1 after 2000 cycles [57]
Sb/p-Ti3C2Tx 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-2.5 0.2 A·g-1, 216.8 mAh·g-1 after 300 cycles [58]
Bi/MXene 1 mol·L-1 NaClO4 in PC with 5%FEC 0.01-1.5 5 A·g-1, 301 mAh·g-1 after 2500 cycles [59]
Metal oxide based composite Sb2O3/MXene 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-2.5 0.5 A·g-1, 395 mAh·g-1 after 100 cycles [60]
TiO2@Ti3C2Tx 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-3 0.96 A·g-1, 116 mAh·g-1 after 5000 cycles [61]
VO2/MX 1 mol·L-1 NaClO4 in EC/DEC with 5%FEC 0.01-3 0.1 A·g-1, 281 mAh·g-1 after 200 cycles [62]
Metal sulfide based composite SnS2 QDs/Ti3C2 composite 1 mol·L-1 NaClO4 in EC/DMC/EMC 0.01-3 0.1 A·g-1, 345.3 mAh·g-1 after 600 cycles [72]
Ni3S2/d-Ti3C2 1 mol·L-1 NaClO4 in EC/DMC with 5%FEC 0.01-3 1 A·g-1, 193.8 mAh·g-1 after 800 cycles [73]
f-Ti3C2/CoS2@NPC hybrids 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-3 2 A·g-1, 200.6 mAh·g-1 after 1500 cycles [64]
SnS/Ti3C2Tx-O 1 mol·L-1 NaClO4 in EC/DMC with 5%FEC 0.01-3 0.1 A·g-1, 565 mAh·g-1 after 70 cycles [74]
Bi2S3/MXene composite 1 mol·L-1 NaSO3CF3 in DGM 0.5-2.8 0.5 A·g-1, 155 mAh·g-1 after 250 cycles [75]
CoS/MXene 1 mol·L-1 NaSO3CF3 in DGM 0.4-2.9 2 A·g-1, 265 mAh·g-1 after 1700 cycles [76]
(CoS NP@NHC)@ MXene 1 mol·L-1 NaClO4 in EC/DMC with 5%FEC 0.01-3 2 A·g-1, 420 mAh·g-1 after 600 cycles [65]
Co-NiS/MXene composite 1 mol·L-1 NaClO4 in EC/DMC/EMC with 5%FEC 0.01-3 0.1 A·g-1, 409 mAh·g-1 after 100 cycles [77]
Sb2S3/Ti3C2Tx 1 mol·L-1 NaClO4 in PC with 5%FEC 0.01-1.5 1 A·g-1, 464 mAh·g-1 after 500 cycles [66]
L-Sb2S3/Ti3C2 composite 1 mol·L-1 NaClO4 in EC/DEC with 5%FEC 0.01-3 0.1 A·g-1, 455.5 mAh·g-1 after 100 cycles [78]
MSe-MXene-CNRib 1 mol·L-1 NaClO4 in EC/DMC 0.01-3 1 A·g-1, 480.7 mAh·g-1 after 1000 cycles [68]
Fex-1Sex/MXene/ FCR 1 mol·L-1 NaClO4 in EC/DMC 0.01-3 10 A·g-1, 348.1 mAh·g-1 after 2000 cycles [79]
MX/SnS2 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-2.5 0.1 A·g-1, 322 mAh·g-1 after 200 cycles [69]
MoSe2/MXene 1 mol·L-1 NaClO4 in EC/PC with 5%FEC 0.01-3 2 A·g-1, 384 mAh·g-1 after 400 cycles [80]
CoxFe1-xS2@ S-Ti3C2 1 mol·L-1 NaSO3CF3 in DGM 0.5-3 5 A·g-1, 399 mAh·g-1 after 600 cycles [81]
MX-H-MoS2@NC 1 mol·L-1 NaPF6 in DOL/DGM 0.01-3 5 A·g-1, 198.3 mAh·g-1 after 2000 cycles [67]
NiSe2@C@MXene composites 1 mol·L-1 NaClO4 in EC/DEC with 5%FEC 0.01-3 2 A·g-1, 327 mAh·g-1 after 4000 cycles [82]
Table 1  少层Ti3C2Tx基复合材料的钠离子储存性能
1 ARICO A , BRUCE P , SCROSATI B , et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4 (5): 366- 377.
doi: 10.1038/nmat1368
2 VAALMA C , BUCHHOLZ D , WEIL M , et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3 (4): 18013.
doi: 10.1038/natrevmats.2018.13
3 SUN Y , GUO S , ZHOU H . Exploration of advanced electrode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9 (23): 1800212.
doi: 10.1002/aenm.201800212
4 SUN Y , GAO S , XIE Y . Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction[J]. Chemical Society Reviews, 2014, 43 (2): 530- 546.
doi: 10.1039/C3CS60231A
5 TAN C , CAO X , WU X J , et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117 (9): 6225- 6331.
doi: 10.1021/acs.chemrev.6b00558
6 BONACCORSO F , COLOMBO L , YU G , et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347 (6217): 1246501.
7 XIONG D , LI X , BAI Z , et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small, 2018, 14 (17): 1703419.
doi: 10.1002/smll.201703419
8 BHIMANAPATI G R , LIN Z , MEUNIER V , et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9 (12): 11509- 11539.
doi: 10.1021/acsnano.5b05556
9 ZHAO J , LIU H , YU Z , et al. Rise of silicene: a competitive 2D material[J]. Progress in Materials Science, 2016, 83, 24- 151.
doi: 10.1016/j.pmatsci.2016.04.001
10 LI J , GUO C , LI C M . Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries[J]. ChemSusChem, 2020, 13 (6): 1047- 1070.
11 孙川, 邱学青, 覃发梅, 等. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019, 47 (12): 21- 23.
doi: 10.11868/j.issn.1001-4381.2018.001461
11 SUN C , QIU X Q , QIN F M , et al. Research progress in liquid phase exfoliation of boron nitride and their application management of electronic devices[J]. Journal of Materials Engineering, 2019, 47 (12): 21- 23.
doi: 10.11868/j.issn.1001-4381.2018.001461
12 NAGUIB M , KURTOGLU M , PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248- 4253.
doi: 10.1002/adma.201102306
13 TANG Q , ZHOU Z , SHEN P W . Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2and Ti3C2X2(X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134 (40): 16909- 16916.
doi: 10.1021/ja308463r
14 TANG H , HU Q , ZHENG M B , et al. MXene-2D layered electrode materials for energy storage[J]. Progress in Natural Science-Materials International, 2018, 28 (2): 133- 147.
doi: 10.1016/j.pnsc.2018.03.003
15 SONG F , LI G , ZHU Y , et al. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets[J]. Journal of Materials Chemistry A, 2020, 8 (36): 18538- 18559.
doi: 10.1039/D0TA06222G
16 ZHANG X , ZHANG Z , ZHOU Z . MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27 (1): 73- 85.
doi: 10.1016/j.jechem.2017.08.004
17 LIU A , LIANG X , REN X , et al. Recent progress in MXene-based materials: potential high-performance electrocatalysts[J]. Advanced Functional Materials, 2020, 30 (38): 2003437.
doi: 10.1002/adfm.202003437
18 CHEN J , HUANG Q , HUANG H , et al. Recent progress and advances in the environmental applications of MXene related materials[J]. Nanoscale, 2020, 12 (6): 3574- 3592.
doi: 10.1039/C9NR08542D
19 NAGUIB M , MASHTALIR O , CARLE J , et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6 (2): 1322- 1331.
doi: 10.1021/nn204153h
20 MASHTALIR O , NAGUIB M , MOCHALIN V N , et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4, 1716.
doi: 10.1038/ncomms2664
21 ALHABEB M , MALESKI K , ANASORI B , et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29 (18): 7633- 7644.
doi: 10.1021/acs.chemmater.7b02847
22 GHIDIU M , LUKATSKAYA M R , ZHAO M Q , et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516 (7529): 78- 81.
doi: 10.1038/nature13970
23 WANG H , ZHU C , CHAO D , et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29 (46): 1702093.
doi: 10.1002/adma.201702093
24 ER D , LI J , NAGUIB M , et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6 (14): 11173- 11179.
25 WANG X , SHEN X , GAO Y , et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society, 2015, 137 (7): 2715- 2721.
26 KAJIYAMA S , SZABOVA L , SODEYAMA K , et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano, 2016, 10 (3): 3334- 3341.
doi: 10.1021/acsnano.5b06958
27 LV G X , WANG J , SHI Z Q , et al. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries[J]. Materials Letters, 2018, 219, 45- 50.
doi: 10.1016/j.matlet.2018.02.016
28 WU Y T , NIE P , WANG J , et al. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance[J]. ACS Applied Materials & Interfaces, 2017, 9 (45): 39610- 39617.
29 ZHANG S , HAN W Q . Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering[J]. Physical Chemistry Chemical Physics, 2020, 22 (29): 16482- 16526.
doi: 10.1039/D0CP02275F
30 LUKATSKAYA M R , MASHTALIR O , REN C E , et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341 (6153): 1502- 1505.
doi: 10.1126/science.1241488
31 LUO J M , FANG C , JIN C B , et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors[J]. Journal of Materials Chemistry A, 2018, 6 (17): 7794- 7806.
32 LUO J M , ZHENG J H , NAI J W , et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-gast sodium-ion storage by enhanced pseudocapacitance[J]. Advanced Functional Materials, 2019, 29 (10): 1808107.
33 LEE J S , THEERTHAGIRI J , NITHYADHARSENI P , et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 143, 110849.
34 LU C J , YANG L , YAN B Z , et al. Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis[J]. Advanced Functional Materials, 2020, 30 (47): 2000852.
35 LI J , YAN D , HOU S , et al. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping[J]. Journal of Materials Chemistry A, 2018, 6 (3): 1234- 1243.
36 SUN S , XIE Z , YAN Y , et al. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 366, 460- 467.
37 WU C , HUANG C , ZHANG Z , et al. Bulk Ti3C2Tx anodes for superior sodium storage performance: the unique role of O-termination[J]. Materials Chemistry Frontiers, 2021, 5 (6): 2810- 2823.
38 LIANG S , ZHANG S , LIU Z , et al. Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene[J]. Advanced Energy Materials, 2021, 11 (12): 2002600.
39 WU Y , NIE P , JIANG J , et al. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem, 2017, 4 (6): 1560- 1565.
40 DU G , TAO M , GAO W , et al. Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance[J]. Inorganic Chemistry Frontiers, 2019, 6 (1): 117- 125.
41 马艳梅. 钠离子电池硫化物负极材料的研究进展[J]. 储能科学与技术, 2019, 8 (3): 488- 494.
41 MA Y M . Recent research progress of metal sulfides as anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8 (3): 488- 494.
42 ZHANG Y Q , GUO B S , HU L Y , et al. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage[J]. Journal of Alloys and Compounds, 2018, 732, 448- 453.
43 FAN T , WU Y , LI J , et al. Sheet-to-layer structure of SnSe2/MXene composite materials for advanced sodium ion battery anodes[J]. New Journal of Chemistry, 2021, 45 (4): 1944- 1952.
44 ZHAO M Q , XIE X , REN C E , et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29 (37): 1702410.
45 XIE X , KRETSCHMER K , ANASORI B , et al. Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life[J]. ACS Applied Nano Materials, 2018, 1 (2): 505- 511.
46 ZHAO D , CLITES M , YING G , et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage[J]. Chemical Communications, 2018, 54 (36): 4533- 4536.
47 FAN Z , WEI C , YU L , et al. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors[J]. ACS Nano, 2020, 14 (1): 867- 876.
48 LI G , LIAN S , SONG F , et al. Surface chemistry and mesopore dual regulation by sulfur-promised high volumetric capacity of Ti3C2Tx films for sodium-ion storage[J]. Small, 2021, 17 (49): 2103626.
49 张思伟, 张俊, 吴思达, 等. 钠离子电池用碳负极材料研究进展[J]. 化学学报, 2017, 75, 163- 172.
49 ZHANG S W , ZHANG J , WU S D , et al. Research advances of carbon-based anode materials for sodium-ion batteries[J]. Acta Chimica Sinica, 2017, 75, 163- 172.
50 ZHAO M Q , TRAINOR N , REN C E , et al. Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures[J]. Advanced Materials Technologies, 2019, 4 (5): 1800639.
51 SUN N , ZHU Q , ANASORI B , et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials, 2019, 29 (51): 1906282.
52 CAO J , SUN Z , LI J , et al. Microbe-assisted assembly of Ti3C2Tx MXene on Fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage[J]. ACS Nano, 2021, 15 (2): 3423- 3433.
53 ZHU Y , WEN Y , FAN X , et al. Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9 (3): 3254- 3264.
54 ZHANG T , JIANG X , LI G , et al. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx(MXene) nanodot composite[J]. ChemNanoMat, 2018, 4 (1): 56- 60.
55 LI H , LIU A , REN X , et al. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study[J]. Nanoscale, 2019, 11 (42): 19862- 19869.
56 GUO X , ZHANG W , ZHANG J , et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase[J]. ACS Nano, 2020, 14 (3): 3651- 3659.
57 ZHAO R , QIAN Z , LIU Z , et al. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries[J]. Nano Energy, 2019, 65, 104037.
58 ZHANG S , YING H , HUANG P , et al. Ultrafine Sb pillared few-layered Ti3C2Tx MXenes for advanced sodium storage[J]. ACS Applied Energy Materials, 2021, 4 (9): 9806- 9815.
59 MA H , LI J , YANG J , et al. Bismuth nanoparticles anchored on Ti3C2Tx MXene nanosheets for high-performance sodium-ion batteries[J]. Chemistry-an Asian Journal, 2021, 16 (22): 3774- 3780.
60 GUO X , XIE X , CHOI S , et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (24): 12445- 12452.
61 GUO X , ZHANG J Q , SONG J J , et al. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage[J]. Energy Storage Materials, 2018, 14, 306- 313.
62 WU F , JIANG Y , YE Z , et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (3): 1315- 1322.
63 YANG W J , CHEN D , SHE Y Q , et al. Rational design of vanadium chalcogenides for sodium-ion batteries[J]. Journal of Power Sources, 2020, 478, 228769.
64 HUANG P F , YING H J , ZHANG S L , et al. Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan[J]. Chemical Engineering Journal, 2022, 429, 132396.
65 YAO L , GU Q , YU X . Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries[J]. ACS Nano, 2021, 15 (2): 3228- 3240.
66 YANG J , WANG T , GUO X , et al. Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes[J]. Nano Research, 2021, 7, 3933.
67 WU Y , ZHONG W , YANG Q , et al. Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage[J]. Chemical Engineering Journal, 2022, 427, 130960.
68 CAO J , LI J , LI D , et al. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage[J]. Nano-Micro Letters, 2021, 13 (1): 113.
69 WU Y , NIE P , WU L , et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334, 932- 938.
70 XIE X , ZHAO M Q , ANASORI B , et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26, 513- 523.
71 ZHANG W , PAN Z Z , LV W , et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries[J]. Carbon, 2019, 153, 625- 633.
72 DING J , TANG C , ZHU G , et al. Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance[J]. ACS Applied Energy Materials, 2021, 4 (1): 846- 854.
73 LI C , ZHANG D , CAO J , et al. Ni3S2 nanoparticles anchored on d-Ti3C2 nanosheets with enhanced sodium storage[J]. ACS Applied Energy Materials, 2021, 4, 2593- 2599.
74 QIN J , HAO L , WANG X , et al. Toward understanding the enhanced pseudocapacitive storage in 3D SnS/MXene architectures enabled by engineered surface reactions[J]. Chemistry, 2020, 26 (49): 11231- 11240.
75 YANG Q , GAO W , ZHONG W , et al. A synergistic Bi2S3/MXene composite with enhanced performance as an anode material of sodium-ion batteries[J]. New Journal of Chemistry, 2020, 44 (7): 3072- 3077.
76 ZHANG Y , ZHAN R , XU Q , et al. Circuit board-like CoS/MXene composite with superior performance for sodium storage[J]. Chemical Engineering Journal, 2019, 357, 220- 225.
77 ZOU Z , WANG Q , YAN J , et al. Versatile interfacial self-assembly of Ti3C2Tx MXene based composites with enhanced kinetics for superior lithium and sodium storage[J]. ACS Nano, 2021, 15 (7): 12140- 12150.
78 HE F , TANG C , ZHU G , et al. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage[J]. Science China-Chemistry, 2021, 64 (6): 964- 973.
79 CAO J , WANG L , LI D , et al. Ti3C2Tx MXene conductive layers supported bio-derived Fex-1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries[J]. Advanced Materials, 2021, 33 (34): 2101535.
80 XU E , ZHANG Y , WANG H , et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 385, 123839.
81 RUI Z , PENG L , WANG G . Bimetallic sulfide/sulfur doped Ti3C2Tx MXene nanocomposites as high-performance anode materials for sodium-ion batteries[J]. Chemical Research in Chinese Universities, 2020, 36 (3): 431- 438.
82 YUAN Z , GUO H , HUANG Y , et al. Composites of NiSe2@C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage[J]. Chemical Engineering Journal, 2022, 429, 132394.
[1] 郝刚领, 张江, 李育川, 王幸福, 雷波, 王伟国, 王新福. 新型Acrylic/TiNi复合材料阻尼与力学性能研究[J]. 材料工程, 2023, 51(2): 106-115.
[2] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[3] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[4] 吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
[5] 王宪, 贺雍律, 唐俊, 刘钧, 黄贤俊, 翟多才, 张鉴炜. Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能[J]. 材料工程, 2023, 51(1): 140-147.
[6] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[7] 鞠录岩, 张建兵, 马玉钦, 张钊源, 魏文澜. ZrW2O8-Cf/E51低/负热膨胀复合材料制备及超声时间对其热膨胀和力学性能的影响[J]. 材料工程, 2023, 51(1): 171-178.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[10] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[11] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[12] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[13] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[14] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[15] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn