MXene has a wide application prospect in energy storage, electromagnetic interference shielding, catalysis, medicine and other fields due to its unique layered structure, high electronic conductivity and rich surface chemical properties.Ti3C2Tx, as the earliest discovered MXene material, has the possibility to achieve both high energy density and power density in the field of sodium ion batteries because of its inherent metal conductive characteristics, wide layer spacing and abundant surface functional groups, which is attracted by many researchers. Based on this, the research progress of Ti3C2Tx based materials in sodium ion batteries in recent years was reviewed in this paper. Firstly, the structure and electrochemical properties of Ti3C2Tx materials with multi-layer and few-layer were summarized by introducing the preparation of Ti3C2Tx. Then, combined with the application trend of the study, the influences of layer spacing modification, doping modification and morphology regulation on the sodium storage behavior of the two kinds of Ti3C2Tx materials were summarized. The structural design ideas of the two kinds of Ti3C2Tx based composites applied to the anode of the sodium ion battery were also analyzed. It was pointed out that the reasonable structural design is vital to the battery performance. Finally, some suggestions for the problems and challenges faced by Ti3C2Tx based composites in the field of sodium ion batteries were given.
1 mol·L-1 NaClO4 in EC/PC with 5%(mass fraction, the same below)FEC
0.01-3
0.1 A·g-1, 175 mAh·g-1 after 100 cycles
[70]
Freestanding-rGO/TiC
1 mol·L-1 NaClO4 in EC/DEC
0.01-3
1 A·g-1, 110 mAh·g-1 after 2000 cycles
[71]
MXene/rGO heterostructured films
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-3
0.5 A·g-1, 220 mAh·g-1 after 100 cycles
[50]
HC-MX-2∶1 film
1 mol·L-1 NaClO4 in EC/DEC
0.01-3
0.2 A·g-1, 273.2 mAh·g-1 after 1500 cycles
[51]
MXene@NCRib
1 mol·L-1 NaClO4 in EC/DMC
0.01-3
1 A·g-1, 210.2 mAh·g-1 after 1000 cycles
[52]
Alloy based composite
TNDs/P
1 mol·L-1 NaClO4 in EC/DEC with 10%FEC
0.01-2
0.1 A·g-1, 400 mAh·g-1 after 150 cycles
[54]
BP/Ti3C2 composite
1 mol·L-1 NaClO4 in EC/PC
0.01-3
0.1 A·g-1, 121 mAh·g-1 after 100 cycles
[55]
Phosphorene/MXene
1 mol·L-1 NaClO4 in EC/PC
0.01-3
1 A·g-1, 298 mAh·g-1 after 1000 cycles
[56]
PDDA-BP/Ti3C2
1 mol·L-1 NaClO4 in EC/DMC/EMC with 5%FEC
0.01-3
1 A·g-1, 658 mAh·g-1 after 2000 cycles
[57]
Sb/p-Ti3C2Tx
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-2.5
0.2 A·g-1, 216.8 mAh·g-1 after 300 cycles
[58]
Bi/MXene
1 mol·L-1 NaClO4 in PC with 5%FEC
0.01-1.5
5 A·g-1, 301 mAh·g-1 after 2500 cycles
[59]
Metal oxide based composite
Sb2O3/MXene
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-2.5
0.5 A·g-1, 395 mAh·g-1 after 100 cycles
[60]
TiO2@Ti3C2Tx
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-3
0.96 A·g-1, 116 mAh·g-1 after 5000 cycles
[61]
VO2/MX
1 mol·L-1 NaClO4 in EC/DEC with 5%FEC
0.01-3
0.1 A·g-1, 281 mAh·g-1 after 200 cycles
[62]
Metal sulfide based composite
SnS2 QDs/Ti3C2 composite
1 mol·L-1 NaClO4 in EC/DMC/EMC
0.01-3
0.1 A·g-1, 345.3 mAh·g-1 after 600 cycles
[72]
Ni3S2/d-Ti3C2
1 mol·L-1 NaClO4 in EC/DMC with 5%FEC
0.01-3
1 A·g-1, 193.8 mAh·g-1 after 800 cycles
[73]
f-Ti3C2/CoS2@NPC hybrids
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-3
2 A·g-1, 200.6 mAh·g-1 after 1500 cycles
[64]
SnS/Ti3C2Tx-O
1 mol·L-1 NaClO4 in EC/DMC with 5%FEC
0.01-3
0.1 A·g-1, 565 mAh·g-1 after 70 cycles
[74]
Bi2S3/MXene composite
1 mol·L-1 NaSO3CF3 in DGM
0.5-2.8
0.5 A·g-1, 155 mAh·g-1 after 250 cycles
[75]
CoS/MXene
1 mol·L-1 NaSO3CF3 in DGM
0.4-2.9
2 A·g-1, 265 mAh·g-1 after 1700 cycles
[76]
(CoS NP@NHC)@ MXene
1 mol·L-1 NaClO4 in EC/DMC with 5%FEC
0.01-3
2 A·g-1, 420 mAh·g-1 after 600 cycles
[65]
Co-NiS/MXene composite
1 mol·L-1 NaClO4 in EC/DMC/EMC with 5%FEC
0.01-3
0.1 A·g-1, 409 mAh·g-1 after 100 cycles
[77]
Sb2S3/Ti3C2Tx
1 mol·L-1 NaClO4 in PC with 5%FEC
0.01-1.5
1 A·g-1, 464 mAh·g-1 after 500 cycles
[66]
L-Sb2S3/Ti3C2 composite
1 mol·L-1 NaClO4 in EC/DEC with 5%FEC
0.01-3
0.1 A·g-1, 455.5 mAh·g-1 after 100 cycles
[78]
MSe-MXene-CNRib
1 mol·L-1 NaClO4 in EC/DMC
0.01-3
1 A·g-1, 480.7 mAh·g-1 after 1000 cycles
[68]
Fex-1Sex/MXene/ FCR
1 mol·L-1 NaClO4 in EC/DMC
0.01-3
10 A·g-1, 348.1 mAh·g-1 after 2000 cycles
[79]
MX/SnS2
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-2.5
0.1 A·g-1, 322 mAh·g-1 after 200 cycles
[69]
MoSe2/MXene
1 mol·L-1 NaClO4 in EC/PC with 5%FEC
0.01-3
2 A·g-1, 384 mAh·g-1 after 400 cycles
[80]
CoxFe1-xS2@ S-Ti3C2
1 mol·L-1 NaSO3CF3 in DGM
0.5-3
5 A·g-1, 399 mAh·g-1 after 600 cycles
[81]
MX-H-MoS2@NC
1 mol·L-1 NaPF6 in DOL/DGM
0.01-3
5 A·g-1, 198.3 mAh·g-1 after 2000 cycles
[67]
NiSe2@C@MXene composites
1 mol·L-1 NaClO4 in EC/DEC with 5%FEC
0.01-3
2 A·g-1, 327 mAh·g-1 after 4000 cycles
[82]
Table 1 少层Ti3C2Tx基复合材料的钠离子储存性能
1
ARICO A , BRUCE P , SCROSATI B , et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4 (5): 366- 377.
doi: 10.1038/nmat1368
2
VAALMA C , BUCHHOLZ D , WEIL M , et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3 (4): 18013.
doi: 10.1038/natrevmats.2018.13
3
SUN Y , GUO S , ZHOU H . Exploration of advanced electrode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9 (23): 1800212.
doi: 10.1002/aenm.201800212
4
SUN Y , GAO S , XIE Y . Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction[J]. Chemical Society Reviews, 2014, 43 (2): 530- 546.
doi: 10.1039/C3CS60231A
5
TAN C , CAO X , WU X J , et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117 (9): 6225- 6331.
doi: 10.1021/acs.chemrev.6b00558
6
BONACCORSO F , COLOMBO L , YU G , et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347 (6217): 1246501.
7
XIONG D , LI X , BAI Z , et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small, 2018, 14 (17): 1703419.
doi: 10.1002/smll.201703419
8
BHIMANAPATI G R , LIN Z , MEUNIER V , et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9 (12): 11509- 11539.
doi: 10.1021/acsnano.5b05556
9
ZHAO J , LIU H , YU Z , et al. Rise of silicene: a competitive 2D material[J]. Progress in Materials Science, 2016, 83, 24- 151.
doi: 10.1016/j.pmatsci.2016.04.001
10
LI J , GUO C , LI C M . Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries[J]. ChemSusChem, 2020, 13 (6): 1047- 1070.
SUN C , QIU X Q , QIN F M , et al. Research progress in liquid phase exfoliation of boron nitride and their application management of electronic devices[J]. Journal of Materials Engineering, 2019, 47 (12): 21- 23.
doi: 10.11868/j.issn.1001-4381.2018.001461
12
NAGUIB M , KURTOGLU M , PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248- 4253.
doi: 10.1002/adma.201102306
13
TANG Q , ZHOU Z , SHEN P W . Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2and Ti3C2X2(X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134 (40): 16909- 16916.
doi: 10.1021/ja308463r
14
TANG H , HU Q , ZHENG M B , et al. MXene-2D layered electrode materials for energy storage[J]. Progress in Natural Science-Materials International, 2018, 28 (2): 133- 147.
doi: 10.1016/j.pnsc.2018.03.003
15
SONG F , LI G , ZHU Y , et al. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets[J]. Journal of Materials Chemistry A, 2020, 8 (36): 18538- 18559.
doi: 10.1039/D0TA06222G
16
ZHANG X , ZHANG Z , ZHOU Z . MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27 (1): 73- 85.
doi: 10.1016/j.jechem.2017.08.004
17
LIU A , LIANG X , REN X , et al. Recent progress in MXene-based materials: potential high-performance electrocatalysts[J]. Advanced Functional Materials, 2020, 30 (38): 2003437.
doi: 10.1002/adfm.202003437
18
CHEN J , HUANG Q , HUANG H , et al. Recent progress and advances in the environmental applications of MXene related materials[J]. Nanoscale, 2020, 12 (6): 3574- 3592.
doi: 10.1039/C9NR08542D
19
NAGUIB M , MASHTALIR O , CARLE J , et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6 (2): 1322- 1331.
doi: 10.1021/nn204153h
20
MASHTALIR O , NAGUIB M , MOCHALIN V N , et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4, 1716.
doi: 10.1038/ncomms2664
21
ALHABEB M , MALESKI K , ANASORI B , et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29 (18): 7633- 7644.
doi: 10.1021/acs.chemmater.7b02847
22
GHIDIU M , LUKATSKAYA M R , ZHAO M Q , et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516 (7529): 78- 81.
doi: 10.1038/nature13970
23
WANG H , ZHU C , CHAO D , et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29 (46): 1702093.
doi: 10.1002/adma.201702093
24
ER D , LI J , NAGUIB M , et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6 (14): 11173- 11179.
25
WANG X , SHEN X , GAO Y , et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society, 2015, 137 (7): 2715- 2721.
26
KAJIYAMA S , SZABOVA L , SODEYAMA K , et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano, 2016, 10 (3): 3334- 3341.
doi: 10.1021/acsnano.5b06958
27
LV G X , WANG J , SHI Z Q , et al. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries[J]. Materials Letters, 2018, 219, 45- 50.
doi: 10.1016/j.matlet.2018.02.016
28
WU Y T , NIE P , WANG J , et al. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance[J]. ACS Applied Materials & Interfaces, 2017, 9 (45): 39610- 39617.
29
ZHANG S , HAN W Q . Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering[J]. Physical Chemistry Chemical Physics, 2020, 22 (29): 16482- 16526.
doi: 10.1039/D0CP02275F
30
LUKATSKAYA M R , MASHTALIR O , REN C E , et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341 (6153): 1502- 1505.
doi: 10.1126/science.1241488
31
LUO J M , FANG C , JIN C B , et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors[J]. Journal of Materials Chemistry A, 2018, 6 (17): 7794- 7806.
32
LUO J M , ZHENG J H , NAI J W , et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-gast sodium-ion storage by enhanced pseudocapacitance[J]. Advanced Functional Materials, 2019, 29 (10): 1808107.
33
LEE J S , THEERTHAGIRI J , NITHYADHARSENI P , et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 143, 110849.
34
LU C J , YANG L , YAN B Z , et al. Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis[J]. Advanced Functional Materials, 2020, 30 (47): 2000852.
35
LI J , YAN D , HOU S , et al. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping[J]. Journal of Materials Chemistry A, 2018, 6 (3): 1234- 1243.
36
SUN S , XIE Z , YAN Y , et al. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 366, 460- 467.
37
WU C , HUANG C , ZHANG Z , et al. Bulk Ti3C2Tx anodes for superior sodium storage performance: the unique role of O-termination[J]. Materials Chemistry Frontiers, 2021, 5 (6): 2810- 2823.
38
LIANG S , ZHANG S , LIU Z , et al. Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene[J]. Advanced Energy Materials, 2021, 11 (12): 2002600.
39
WU Y , NIE P , JIANG J , et al. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem, 2017, 4 (6): 1560- 1565.
40
DU G , TAO M , GAO W , et al. Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance[J]. Inorganic Chemistry Frontiers, 2019, 6 (1): 117- 125.
MA Y M . Recent research progress of metal sulfides as anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8 (3): 488- 494.
42
ZHANG Y Q , GUO B S , HU L Y , et al. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage[J]. Journal of Alloys and Compounds, 2018, 732, 448- 453.
43
FAN T , WU Y , LI J , et al. Sheet-to-layer structure of SnSe2/MXene composite materials for advanced sodium ion battery anodes[J]. New Journal of Chemistry, 2021, 45 (4): 1944- 1952.
44
ZHAO M Q , XIE X , REN C E , et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29 (37): 1702410.
45
XIE X , KRETSCHMER K , ANASORI B , et al. Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life[J]. ACS Applied Nano Materials, 2018, 1 (2): 505- 511.
46
ZHAO D , CLITES M , YING G , et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage[J]. Chemical Communications, 2018, 54 (36): 4533- 4536.
47
FAN Z , WEI C , YU L , et al. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors[J]. ACS Nano, 2020, 14 (1): 867- 876.
48
LI G , LIAN S , SONG F , et al. Surface chemistry and mesopore dual regulation by sulfur-promised high volumetric capacity of Ti3C2Tx films for sodium-ion storage[J]. Small, 2021, 17 (49): 2103626.
ZHANG S W , ZHANG J , WU S D , et al. Research advances of carbon-based anode materials for sodium-ion batteries[J]. Acta Chimica Sinica, 2017, 75, 163- 172.
50
ZHAO M Q , TRAINOR N , REN C E , et al. Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures[J]. Advanced Materials Technologies, 2019, 4 (5): 1800639.
51
SUN N , ZHU Q , ANASORI B , et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials, 2019, 29 (51): 1906282.
52
CAO J , SUN Z , LI J , et al. Microbe-assisted assembly of Ti3C2Tx MXene on Fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage[J]. ACS Nano, 2021, 15 (2): 3423- 3433.
53
ZHU Y , WEN Y , FAN X , et al. Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9 (3): 3254- 3264.
54
ZHANG T , JIANG X , LI G , et al. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx(MXene) nanodot composite[J]. ChemNanoMat, 2018, 4 (1): 56- 60.
55
LI H , LIU A , REN X , et al. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study[J]. Nanoscale, 2019, 11 (42): 19862- 19869.
56
GUO X , ZHANG W , ZHANG J , et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase[J]. ACS Nano, 2020, 14 (3): 3651- 3659.
57
ZHAO R , QIAN Z , LIU Z , et al. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries[J]. Nano Energy, 2019, 65, 104037.
58
ZHANG S , YING H , HUANG P , et al. Ultrafine Sb pillared few-layered Ti3C2Tx MXenes for advanced sodium storage[J]. ACS Applied Energy Materials, 2021, 4 (9): 9806- 9815.
59
MA H , LI J , YANG J , et al. Bismuth nanoparticles anchored on Ti3C2Tx MXene nanosheets for high-performance sodium-ion batteries[J]. Chemistry-an Asian Journal, 2021, 16 (22): 3774- 3780.
60
GUO X , XIE X , CHOI S , et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (24): 12445- 12452.
61
GUO X , ZHANG J Q , SONG J J , et al. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage[J]. Energy Storage Materials, 2018, 14, 306- 313.
62
WU F , JIANG Y , YE Z , et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (3): 1315- 1322.
63
YANG W J , CHEN D , SHE Y Q , et al. Rational design of vanadium chalcogenides for sodium-ion batteries[J]. Journal of Power Sources, 2020, 478, 228769.
64
HUANG P F , YING H J , ZHANG S L , et al. Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan[J]. Chemical Engineering Journal, 2022, 429, 132396.
65
YAO L , GU Q , YU X . Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries[J]. ACS Nano, 2021, 15 (2): 3228- 3240.
66
YANG J , WANG T , GUO X , et al. Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes[J]. Nano Research, 2021, 7, 3933.
67
WU Y , ZHONG W , YANG Q , et al. Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage[J]. Chemical Engineering Journal, 2022, 427, 130960.
68
CAO J , LI J , LI D , et al. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage[J]. Nano-Micro Letters, 2021, 13 (1): 113.
69
WU Y , NIE P , WU L , et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334, 932- 938.
70
XIE X , ZHAO M Q , ANASORI B , et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26, 513- 523.
71
ZHANG W , PAN Z Z , LV W , et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries[J]. Carbon, 2019, 153, 625- 633.
72
DING J , TANG C , ZHU G , et al. Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance[J]. ACS Applied Energy Materials, 2021, 4 (1): 846- 854.
73
LI C , ZHANG D , CAO J , et al. Ni3S2 nanoparticles anchored on d-Ti3C2 nanosheets with enhanced sodium storage[J]. ACS Applied Energy Materials, 2021, 4, 2593- 2599.
74
QIN J , HAO L , WANG X , et al. Toward understanding the enhanced pseudocapacitive storage in 3D SnS/MXene architectures enabled by engineered surface reactions[J]. Chemistry, 2020, 26 (49): 11231- 11240.
75
YANG Q , GAO W , ZHONG W , et al. A synergistic Bi2S3/MXene composite with enhanced performance as an anode material of sodium-ion batteries[J]. New Journal of Chemistry, 2020, 44 (7): 3072- 3077.
76
ZHANG Y , ZHAN R , XU Q , et al. Circuit board-like CoS/MXene composite with superior performance for sodium storage[J]. Chemical Engineering Journal, 2019, 357, 220- 225.
77
ZOU Z , WANG Q , YAN J , et al. Versatile interfacial self-assembly of Ti3C2Tx MXene based composites with enhanced kinetics for superior lithium and sodium storage[J]. ACS Nano, 2021, 15 (7): 12140- 12150.
78
HE F , TANG C , ZHU G , et al. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage[J]. Science China-Chemistry, 2021, 64 (6): 964- 973.
79
CAO J , WANG L , LI D , et al. Ti3C2Tx MXene conductive layers supported bio-derived Fex-1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries[J]. Advanced Materials, 2021, 33 (34): 2101535.
80
XU E , ZHANG Y , WANG H , et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 385, 123839.
81
RUI Z , PENG L , WANG G . Bimetallic sulfide/sulfur doped Ti3C2Tx MXene nanocomposites as high-performance anode materials for sodium-ion batteries[J]. Chemical Research in Chinese Universities, 2020, 36 (3): 431- 438.
82
YUAN Z , GUO H , HUANG Y , et al. Composites of NiSe2@C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage[J]. Chemical Engineering Journal, 2022, 429, 132394.