High-strength aluminum alloys (2××× and 7×××, etc.) are widely used in aerospace, automobile and other fields because of their high specific strength and good machinability. With the development of high thrust-weight ratio engine and automobile lightweight technology, the demand for lightweight structural materials is increasing. Meanwhile, parts also present the "thin-walled, hollow and composite" tendency gradually, and the traditional processing methods of high-strength aluminum alloy are increasingly difficult to meet the requirements. As a common metal additive manufacturing (AM) technology, selective laser melting (SLM) is a great potential manufacturing technology for complex parts. SLM is expected to become an emerging technology to expand the application of high-strength aluminum alloys. However, due to their poor casting and welding properties, high-strength aluminum alloys easily produce the periodic hot cracks and coarse columnar grains during SLM, leading to unsatisfactory mechanical properties. Grain refinement is the key to overcome the inherent hot-tearing crack of SLMed high-strength aluminum alloys. The research progress in microstructure and mechanical property control of SLMed high-strength aluminum alloys in recent years was reviewed. The mechanical properties of alloys with different compositions were summarized. Importantly, the main strategies to suppress hot-crack formation in SLMed high-strength aluminum alloys were highlighted, including optimization of SLM process parameters and grain refinement by microalloying or addition of nanoparticles. It was pointed out that the main issue of SLMed high-strength aluminum alloys was the change of alloy composition on the comprehensive properties and heat treatment process was still unclear. The development trends were forecasted, such as designing new high-strength aluminum alloys and evaluating their comprehensive performances, using post-treatment process and other means to further improve the comprehensive performances of the alloys, and designing special grain refiners for SLM and investigating refinement mechanism.
刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
Xiaohui LIU, Yunzhong LIU. Research status of crack inhibition via grain refinement of high-strength aluminum alloys fabricated by selective laser melting. Journal of Materials Engineering, 2022, 50(8): 1-16.
MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
2
ZHANG J , SONG B , WEI Q , et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35 (2): 270- 284.
3
AMATO K N , GAYTAN S M , MURR L E , et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia, 2012, 60 (5): 2229- 2239.
doi: 10.1016/j.actamat.2011.12.032
4
PLEASS C , JOTHI S . Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 24, 419- 431.
doi: 10.1016/j.addma.2018.09.023
5
XU W , BRANDT M , SUN S , et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85, 74- 84.
doi: 10.1016/j.actamat.2014.11.028
6
BERTSCH K M , MERIC DE BELLEFON G , KUEHL B , et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L[J]. Acta Materialia, 2020, 199, 19- 33.
doi: 10.1016/j.actamat.2020.07.063
7
SAINI J S , DOWLING L , TRIMBLE D , et al. Mechanical properties of selective laser melted CoCr alloys: a review[J]. Journal of Materials Engineering and Performance, 2021, 30 (12): 8700- 8714.
doi: 10.1007/s11665-021-06283-1
ZHU H H , LIAO H L . Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55 (1): 22- 28.
9
EASTON M , STJOHN D H , SWEET L . Grain refinement and hot tearing of aluminium alloys-how to optimise and minimise[J]. Materials Science Forum, 2010, 630, 213- 221.
10
SING S L , AN J , YEONG W Y , et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34 (3): 369- 385.
doi: 10.1002/jor.23075
11
DEBROY T , WEI H L , ZUBACK J S , et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92, 112- 224.
doi: 10.1016/j.pmatsci.2017.10.001
12
LIU X H , LIU Y Z , ZHOU Z G , et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy[J]. Journal of Materials Science & Technology, 2022, 124, 41- 52.
13
KURZ W , BEZENÇON C , GÄUMANN M . Columnar to equiaxed transition in solidication processing[J]. Science and Technology of Advanced Materials, 2001, 2, 185- 191.
doi: 10.1016/S1468-6996(01)00047-X
14
HUNT J D . Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65 (1): 75- 83.
doi: 10.1016/0025-5416(84)90201-5
15
WANG P , ECKERT J , PRASHANTH K G , et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (8): 2001- 2034.
doi: 10.1016/S1003-6326(20)65357-2
16
GÄUMANN M , HENRY S , CLÉTON F , et al. Epitaxial laser metal forming: analysis of microstructure formation[J]. Materials Science and Engineering: A, 1999, 271 (1/2): 232- 241.
17
KOTADIA H R , GIBBONS G , DAS A , et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties[J]. Additive Manufacturing, 2021, 46, 102155.
doi: 10.1016/j.addma.2021.102155
18
WANG C , ZHANG J , LIU L , et al. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy[J]. Journal of Materials Science & Technology, 2011, 27 (7): 668- 672.
19
THIJS L , KEMPEN K , KRUTH J P , et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61 (5): 1809- 1819.
doi: 10.1016/j.actamat.2012.11.052
20
ÇAM G , MISTIKOGLU S . Recent developments in friction stir welding of Al-alloys[J]. Journal of Materials Engineering and Performance, 2014, 23 (6): 1936- 1953.
doi: 10.1007/s11665-014-0968-x
21
LIU X H , LIU Y Z , ZHOU Z G , et al. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC-TiH2[J]. Materials Science and Engineering: A, 2021, 813, 141171.
doi: 10.1016/j.msea.2021.141171
22
TANG Z , VOLLERTSEN F . Influence of grain refinement on hot cracking in laser welding of aluminum[J]. Welding in the World, 2014, 58 (3): 355- 366.
doi: 10.1007/s40194-014-0121-3
23
SABZI H E , MAENG S , LIANG X , et al. Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation[J]. Additive Manufacturing, 2020, 34, 101360.
doi: 10.1016/j.addma.2020.101360
24
MAIR P , KASERER L , BRAUN J , et al. Dependence of mechanical properties and microstructure on solidification onset temperature for Al2024-CaB6 alloys processed using laser powder bed fusion[J]. Materials Science and Engineering: A, 2022, 833, 142552.
doi: 10.1016/j.msea.2021.142552
25
LIU J , KOU S . Effect of diffusion on susceptibility to cracking during solidification[J]. Acta Materialia, 2015, 100, 359- 368.
doi: 10.1016/j.actamat.2015.08.064
26
LI Y , LI H , KATGERMAN L , et al. Recent advances in hot tearing during casting of aluminium alloys[J]. Progress in Materials Science, 2021, 117, 100741.
doi: 10.1016/j.pmatsci.2020.100741
27
MAIR P , GOETTGENS V S , RAINER T , et al. Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 863, 158714.
doi: 10.1016/j.jallcom.2021.158714
28
MONTERO-SISTIAGA M L , MERTENS R , VRANCKEN B , et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238, 437- 445.
doi: 10.1016/j.jmatprotec.2016.08.003
29
ZHANG H , ZHU H , QI T , et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2016, 656, 47- 54.
doi: 10.1016/j.msea.2015.12.101
30
KARG M , AHUJA B , WIESENMAYER S , et al. Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219(AlCu6Mn) additively manufactured by laser beam melting in powder bed[J]. Micromachines, 2017, 8 (1): 23.
doi: 10.3390/mi8010023
HU L , LIU Y Z , TU C , et al. Effects of nano-TiB2 particles on microstructure and mechanical properties of AA2024 deposited by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24 (4): 365- 373.
doi: 10.3969/j.issn.1673-0224.2019.04.010
32
BIFFI C A , BASSANI P , FIOCCHI J , et al. Selective laser melting of AlCu-TiB2 alloy using pulsed wave laser emission mode: processability, microstructure and mechanical properties[J]. Materials & Design, 2021, 204, 109628.
33
MAIR P , KASERER L , BRAUN J , et al. Microstructure and mechanical properties of a TiB2-modified Al-Cu alloy processed by laser powder-bed fusion[J]. Materials Science and Engineering: A, 2021, 799, 140209.
doi: 10.1016/j.msea.2020.140209
34
ZHANG H , ZHU H , NIE X , et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134, 6- 10.
doi: 10.1016/j.scriptamat.2017.02.036
35
NIE X J , ZHANG H , ZHU H H , et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys[J]. Journal of Alloys and Compounds, 2018, 764, 977- 986.
doi: 10.1016/j.jallcom.2018.06.032
36
NIE X J , ZHANG H , ZHU H H , et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy[J]. Materials Letters, 2019, 248, 5- 7.
doi: 10.1016/j.matlet.2019.03.112
WANG K D , LIU Y Z , CHENG W , et al. Microstructure and mechanical properties of Zr modified Al-Cu-Mg alloy processed by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (8): 2069- 2080.
38
WANG P , GAMMER C , BRENNE F , et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting[J]. Materials Science and Engineering: A, 2018, 711, 562- 570.
doi: 10.1016/j.msea.2017.11.063
39
TAN Q , ZHANG J , SUN Q , et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia, 2020, 196, 1- 16.
doi: 10.1016/j.actamat.2020.06.026
40
ZHANG J , GAO J , SONG B , et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting[J]. Additive Manufacturing, 2021, 38, 101829.
doi: 10.1016/j.addma.2020.101829
41
HU Z , QI Y , GAO S , et al. Aging responses of an Al-Cu alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2021, 37, 101635.
doi: 10.1016/j.addma.2020.101635
42
RESCHETNIK W , BRVGGEMANN J P , AYDINÖZ M E , et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2, 3040- 3048.
doi: 10.1016/j.prostr.2016.06.380
43
ZHOU L , PAN H , HYER H , et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158, 24- 28.
doi: 10.1016/j.scriptamat.2018.08.025
44
ZHU Z G , NG F L , SEET H L , et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation[J]. Materials Today, 2021, 52, 90- 101.
45
TAN Q , FAN Z , TANG X , et al. A novel strategy to additively manufacture 7075 aluminium alloy with selective laser melting[J]. Materials Science and Engineering: A, 2021, 821, 141638.
doi: 10.1016/j.msea.2021.141638
ZHAN Q K , LIU Y Z , LIU X H , et al. Microstructures and mechanical properties of zirconium-containing 7××× aluminum alloy prepared by selective laser melting[J]. Journal of Materials Engineering, 2021, 49 (6): 85- 93.
47
CASATI R , CODURI M , RICCIO M , et al. Development of a high strength Al-Zn-Si-Mg-Cu alloy for selective laser melting[J]. Journal of Alloys and Compounds, 2019, 801, 243- 253.
doi: 10.1016/j.jallcom.2019.06.123
48
LI L , LI R , YUAN T , et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu (Al7075) alloy by Si and Zr microalloying[J]. Materials Science and Engineering: A, 2020, 787, 139492.
doi: 10.1016/j.msea.2020.139492
49
ZHOU S Y , SU Y , WANG H , et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36, 101458.
doi: 10.1016/j.addma.2020.101458
OUYANG S , LIU Y Z , SHEN J J , et al. Microstructure and mechanical properties of selective laser melting of (TiH2+TiB2)/AA7075 composite powders[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25 (3): 197- 205.
doi: 10.3969/j.issn.1673-0224.2020.03.003
51
刘相法, 边秀房. 铝合金组织细化用中间合金[M]. 长沙: 中南大学出版社, 2012.
51
LIU X F , BIAN X F . Master alloys for the structure refinement of aluminum alloys[M]. Changsha: Central South University Press, 2012.
52
TAN Q , LIU Y , FAN Z , et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 2020, 58, 34- 45.
53
QI T , ZHU H , ZHANG H , et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135, 257- 266.
54
TODARO C J , EASTON M A , QIU D , et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11 (1): 142.
doi: 10.1038/s41467-019-13874-z
55
KOUTNY D , PALOUSEK D , PANTELEJEV L , et al. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting[J]. Materials, 2018, 11 (2): 298.
doi: 10.3390/ma11020298
56
BARTKOWIAK K , ULLRICH S , FRICK T , et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12, 393- 401.
doi: 10.1016/j.phpro.2011.03.050
ZHANG H , NIE X J , ZHU H H , et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43 (5): 78- 84.
58
NIE X , ZHANG H , ZHU H , et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples[J]. Journal of Materials Processing Technology, 2018, 256, 69- 77.
doi: 10.1016/j.jmatprotec.2018.01.030
59
KAUFMANN N , IMRAN M , WISCHEROPP T M , et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83, 918- 926.
doi: 10.1016/j.phpro.2016.08.096
XIE Y J , YANG H C , WANG X B , et al. Study on microstructure and mechanical properties of 7075 aluminum alloy fabricated by selective laser melting[J]. Powder Metallurgy Industry, 2018, 28 (3): 13- 18.
61
MARTIN J H , YAHATA B , MAYER J , et al. Grain refinement mechanisms in additively manufactured nanofunctionalized aluminum[J]. Acta Materialia, 2020, 200, 1022- 1037.
doi: 10.1016/j.actamat.2020.09.043
62
KOTADIA H R , HARI BABU N , ZHANG H , et al. Microstructural refinement of Al-10.2%Si alloy by intensive shearing[J]. Materials Letters, 2010, 64 (6): 671- 673.
doi: 10.1016/j.matlet.2009.12.033
63
NAFISI S , EMADI D , SHEHATA M T , et al. Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy[J]. Materials Science and Engineering: A, 2006, 432 (1/2): 71- 83.
64
KOTADIA H R , QIAN M , ESKIN D G , et al. On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification[J]. Materials & Design, 2017, 132, 266- 274.
65
YUAN T , KOU S , LUO Z . Grain refining by ultrasonic stirring of the weld pool[J]. Acta Materialia, 2016, 106, 144- 154.
doi: 10.1016/j.actamat.2016.01.016
66
WEN T , LIU S Y , CHEN S , et al. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (2): 397- 404.
doi: 10.1016/S1003-6326(15)63616-0
67
KOU S , LE Y . Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy[J]. Metallurgical Transactions A, 1985, 16 (7): 1345- 1352.
doi: 10.1007/BF02670338
68
PEARCE B P , KERR H W . Grain refinement in magnetically stirred GTA welds of aluminum alloys[J]. Metallurgical Transactions B, 1981, 12 (3): 479- 486.
doi: 10.1007/BF02654317
69
RAO S R K , REDDY G M , KAMARAJ M , et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds[J]. Materials Science and Engineering: A, 2005, 404 (1/2): 227- 234.
70
ZHANG Y , GUO Y , CHEN Y , et al. Microstructure and mechanical properties of Al-12Si alloys fabricated by ultrasonic-assisted laser metal deposition[J]. Materials, 2019, 13 (1): 126.
doi: 10.3390/ma13010126
71
EASTON M , STJOHN D . Grain refinement of aluminum alloys: part Ⅰ. the nucleant and solute paradigms—a review of the literature[J]. Metallurgical and Materials Transactions A, 1999, 30 (6): 1613- 1623.
doi: 10.1007/s11661-999-0098-5
72
JIANG B , ZHENGLONG L , XI C , et al. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition[J]. Ceramics International, 2019, 45 (5): 5680- 5692.
doi: 10.1016/j.ceramint.2018.12.033
73
WANG P , GAMMER C , BRENNE F , et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties[J]. Composites Part B, 2018, 147, 162- 168.
doi: 10.1016/j.compositesb.2018.04.026
74
WEN X , WANG Q , MU Q , et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2019, 745, 319- 325.
doi: 10.1016/j.msea.2018.12.072
75
LEI S , LI X , DENG Y , et al. Microstructure and mechanical properties of electron beam freeform fabricated TiB2/Al-Cu composite[J]. Materials Letters, 2020, 277, 128273.
doi: 10.1016/j.matlet.2020.128273
76
LIU X , ZHAO Q , JI Z , et al. Effectively mitigated macro-segregation and improved tensile properties of twin-roll casting Al-Cu strips via the addition of TiC nanoparticles[J]. Journal of Materials Processing Technology, 2021, 296, 117200.
doi: 10.1016/j.jmatprotec.2021.117200
77
MOHANTY P S , GRUZLESK J E . Mechanism of grain refinement in aluminium[J]. Acta Metallurgica et Materialia, 1995, 43 (5): 2001- 2012.
doi: 10.1016/0956-7151(94)00405-7
78
XU J , LI R , LI Q . Effect of agglomeration on nucleation potency of inoculant particles in the Al-Nb-B master alloy: modeling and experiments[J]. Metallurgical and Materials Transactions A, 2021, 52 (3): 1077- 1094.
doi: 10.1007/s11661-020-06123-2
79
GREER A L , BUNN A M , TRONCHE A , et al. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B[J]. Acta Materialia, 2000, 48 (11): 2823- 2835.
doi: 10.1016/S1359-6454(00)00094-X
80
MAXWELL I , HELLAWELL A . A simple model for grain refinement during solidification[J]. Acta Metallurgica, 1975, 23, 229- 237.
doi: 10.1016/0001-6160(75)90188-1
WAN D Y , LI X Q , LAI J M , et al. Microstructure properties and crack of 7075 aluminum alloy based on selective laser melting technology[J]. Applied Laser, 2019, 39 (1): 1- 8.
82
XU J , LI Y , HU B , et al. Development of Al-Nb-B master alloy with high Nb/B ratio for grain refinement of hypoeutectic Al-Si cast alloys[J]. Journal of Materials Science, 2019, 54 (23): 14561- 14576.
doi: 10.1007/s10853-019-03915-9
83
LI X P , JI G , CHEN Z , et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129, 183- 193.
doi: 10.1016/j.actamat.2017.02.062
84
RØYSET J , RYUM N . Scandium in aluminium alloys[J]. International Materials Reviews, 2013, 50 (1): 19- 44.
85
EASTON M , STJOHN D . Grain refinement of aluminum alloys: part Ⅱ. confirmation of, and a mechanism for, the solute paradigm[J]. Metallurgical and Materials Transactions A, 1999, 30 (6): 1625- 1633.
doi: 10.1007/s11661-999-0099-4
86
LI P , LI R , YANG H , et al. Selective laser melting of Al-3.48Cu-2.03Si-0.48Sc-0.28Zr alloy: microstructure evolution, properties and metallurgical defects[J]. Intermetallics, 2021, 129, 107008.
doi: 10.1016/j.intermet.2020.107008
87
GRIFFITHS S , ROSSELL M D , CROTEAU J , et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 143, 34- 42.
doi: 10.1016/j.matchar.2018.03.033
88
CROTEAU J R , GRIFFITHS S , ROSSELL M D , et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153, 35- 44.
doi: 10.1016/j.actamat.2018.04.053
89
MURTY B S , KORI S A , CHAKRABORTY M . Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2013, 47 (1): 3- 29.
90
ZHANG M , KELLY P , EASTON M , et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J]. Acta Materialia, 2005, 53 (5): 1427- 1438.
doi: 10.1016/j.actamat.2004.11.037
91
OTANI Y , SASAKI S . Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering: A, 2020, 777, 139079.
doi: 10.1016/j.msea.2020.139079
92
SPIERINGS A B , DAWSON K , VOEGTLIN M , et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting[J]. CIRP Annals, 2016, 65 (1): 213- 216.
doi: 10.1016/j.cirp.2016.04.057
93
SCHMIDTKE K , PALM F , HAWKINS A , et al. Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing[J]. Physics Procedia, 2011, 12, 369- 374.
doi: 10.1016/j.phpro.2011.03.047
94
SPIERINGS A B , DAWSON K , HEELING T , et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115, 52- 63.
95
YANG K V , SHI Y , PALM F , et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scripta Materialia, 2018, 145, 113- 117.
doi: 10.1016/j.scriptamat.2017.10.021
96
LI R , WANG M , YUAN T , et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319, 117- 128.
doi: 10.1016/j.powtec.2017.06.050
97
LI R , WANG M , LI Z , et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193, 83- 98.
doi: 10.1016/j.actamat.2020.03.060
98
JIA Q , ROMETSCH P , CAO S , et al. Towards a high strength aluminium alloy development methodology for selective laser melting[J]. Materials & Design, 2019, 174, 107775.
99
JIA Q , ROMETSCH P , KVRNSTEINER P , et al. Selective laser melting of a high strength Al-Mn-Sc alloy: alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171, 108- 118.
doi: 10.1016/j.actamat.2019.04.014