Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 1-16    DOI: 10.11868/j.issn.1001-4381.2022.000160
  铝合金专栏 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状
刘小辉, 刘允中()
华南理工大学 国家金属材料近净成形工程技术研究中心,广州 510641
Research status of crack inhibition via grain refinement of high-strength aluminum alloys fabricated by selective laser melting
Xiaohui LIU, Yunzhong LIU()
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510641, China
全文: PDF(1665 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

高强铝合金(2×××, 7×××等)因具有比强度高、加工性好等优点而被航空航天、汽车等领域广泛应用。随着大推重比飞行器设计及汽车轻量化技术的发展, 轻质结构材料的需求日益增加, 同时零部件也面临着"薄壁化、中空化、复合化"的发展趋势, 高强铝合金的传统加工方法越来越难以满足要求。近年来, 激光选区熔化成形(selective laser melting, SLM)作为一种常见的金属增材制造技术(additive manufacturing, AM)在复杂零部件成形领域受到关注, 有望成为进一步拓宽高强铝合金应用领域的新兴技术。然而, SLM成形高强铝合金因易产生周期性热裂纹和粗大柱状晶不良组织等问题而发展缓慢, 晶粒细化是克服增材制造高强铝合金这一固有热裂问题的关键所在。本文综述了近年来SLM成形高强铝合金显微组织和力学性能调控等方面的研究进展, 归纳了不同体系合金的力学性能, 重点阐述了抑制SLM成形高强铝合金中热裂纹形成的主要策略, 包括SLM工艺参数优化以及通过微合金化或添加纳米颗粒细化晶粒等方法。指出当前研究存在的主要问题是合金成分的改变对材料综合性能以及热处理制度的影响规律尚不清晰等, 并展望了未来的发展趋势, 如SLM成形新型高强铝合金成分设计与综合性能评价、利用后处理工艺等手段进一步提升合金综合性能以及专用晶粒细化剂的设计与细化机制探究等。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘小辉
刘允中
关键词 高强铝合金激光选区熔化晶粒细化热裂纹增材制造    
Abstract

High-strength aluminum alloys (2××× and 7×××, etc.) are widely used in aerospace, automobile and other fields because of their high specific strength and good machinability. With the development of high thrust-weight ratio engine and automobile lightweight technology, the demand for lightweight structural materials is increasing. Meanwhile, parts also present the "thin-walled, hollow and composite" tendency gradually, and the traditional processing methods of high-strength aluminum alloy are increasingly difficult to meet the requirements. As a common metal additive manufacturing (AM) technology, selective laser melting (SLM) is a great potential manufacturing technology for complex parts. SLM is expected to become an emerging technology to expand the application of high-strength aluminum alloys. However, due to their poor casting and welding properties, high-strength aluminum alloys easily produce the periodic hot cracks and coarse columnar grains during SLM, leading to unsatisfactory mechanical properties. Grain refinement is the key to overcome the inherent hot-tearing crack of SLMed high-strength aluminum alloys. The research progress in microstructure and mechanical property control of SLMed high-strength aluminum alloys in recent years was reviewed. The mechanical properties of alloys with different compositions were summarized. Importantly, the main strategies to suppress hot-crack formation in SLMed high-strength aluminum alloys were highlighted, including optimization of SLM process parameters and grain refinement by microalloying or addition of nanoparticles. It was pointed out that the main issue of SLMed high-strength aluminum alloys was the change of alloy composition on the comprehensive properties and heat treatment process was still unclear. The development trends were forecasted, such as designing new high-strength aluminum alloys and evaluating their comprehensive performances, using post-treatment process and other means to further improve the comprehensive performances of the alloys, and designing special grain refiners for SLM and investigating refinement mechanism.

Key wordshigh-strength aluminum alloys    selective laser melting    grain refinement    hot-tearing crack    additive manufacturing
收稿日期: 2022-03-01      出版日期: 2022-08-16
中图分类号:  TG146.2  
基金资助:广东省重点领域研发计划项目(2019B090907001);广东省科技计划项目(2014B010129002)
通讯作者: 刘允中     E-mail: yzhliu@scut.edu.cn
作者简介: 刘允中(1969—),男,教授,博士,研究方向为3D打印金属新材料及金属雾化制粉与喷射成形,联系地址:广东省广州市天河区华南理工大学38号楼(510641),E-mail: yzhliu@scut.edu.cn
引用本文:   
刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
Xiaohui LIU, Yunzhong LIU. Research status of crack inhibition via grain refinement of high-strength aluminum alloys fabricated by selective laser melting. Journal of Materials Engineering, 2022, 50(8): 1-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000160      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/1
Fig.1  SLM成形高强铝合金
(a)SLM过程示意图[12];(b)温度梯度G和生长速率R对晶粒形貌和尺寸的影响[16-17];(c)SLM成形高强铝合金凝固裂纹形成机制示意图[12];(d)SLM成形AA2024典型柱状晶组织[21];(e)SLM成形高强铝合金通过晶粒细化抑制裂纹示意图[12];(f)SLM成形高强铝合金显微组织调控主要途径
Series Composition Test load direction As-built After heat treatment Ref
YS/MPa UTS/MPa EL/% d/μm YS/MPa UTS/MPa EL/%
2××× AlCuMg H 276.2±41 402.4±9.5 6±1.4 [29]
EN AW-2219 H ≈119 ≈238 ≈14 ≈144 ≈278 ≈9.0 [30]
V ≈115 ≈255 ≈26.6 ≈145 ≈384 ≈21.3
2024 V 223.2 259.8 2.4 19.9 279.3 341.4 3.2 [31]
2024+1TiB2 V 228.8 320.5 7.4 4.25 282.3 401.2 10.4
AlCu+5TiB2 H 317.8±9.3 391±7.3 12.8±0.8 0.5-2 [32]
2024+2CaB6 H 348±16 391±22 12.6±0.6 0.91±0.32 [27]
Al4.5Cu+4.5TiB2 H 322±1 401±2 17.7±0.8 0.64±0.26 [33]
AlCuMg+2Zr H 446±4.3 451±3.6 2.67±1.1 0.8 [34]
AlCuMg 256.5 411.6 7.7 12.93 [35-36]
AlCuMg+0.6Zr 298.3 448.8 11.59 12.93
AlCuMg+2Zr 464.06±2.04 493.3±10.45 4.76±1.03 0.85
AlCuMg+ZrH2 H 320±3 369±9 12.4±0.6 1.28 414±9 485±10 11.2±0.5 [37]
AlCuMg+1Si V 223±4 366±7 5.3±0.3 21±4 368±6 455±10 6.2±1.8 [38]
2024 H 17±3 0.13±0.07 >10 [39]
V 180±13 231±5 2.7±0.7
2024+1Ti H 321±12 365±15 12±0.5 2 286±16 432±20 10±0.8
V 310±7 356±6 12±1.5 287±10 431±4 10±0.3
AlCuMg 150 173.2±20.3 2 6.64 [40]
AlCuMg-1.5Ti 293.2±7.4 426.4±6.4 9.1±0.7 1.64
AlCu5+0.4(Ti-V-Zr) H 155.5±1.5 317.3±1.2 16.53±1.55 13.5 217.2-383.3 412.7-476.2 23.55-9.62 [41]
2024 H 240±10 0.3±0.2 ≈30.47 [21]
2024+1TiH2-1TiC H 390±15 12.0±0.5 ≈2.08 490±20 16.0±1
7××× EN AW-7075 H 42±7.5 0.51±0.25 45±0.5 0.2±0.05 [42]
V 203±12 0.50±0.2 206±25.7 0.56±0.11
AlZnMg+1(Sc-Zr) H 283.5±1.5 386±1.1 18.4±0.1 418.3±2.7 435.7±2.5 11.1±0.9 [43]
AlZnMgCu+0.8(Sc+Zr) 0.35-20 647 11.6 [44]
AlZnMgCu+1Ti H/V 190±8 291±19 7.9±2.9 3 420±7 503±6 7.5±1.2 [45]
Al7075 H 25.5 0.4 [1]
Al7075+1% ZrH2
(volume fraction)
H 325-373 383-417 3.8-5.4
7075+1.5ZrH2 H 1.6 490±5 550±10 12±1 [46]
AlZnMgCu+6.5Si H 332±3 447±10 2.3±0.3 402±4 449±12 1.3±0.2 [47]
V 313±8 386±16 2.2±0.4 370±3 432±9 1.4±0.2
AlZnMgCu+2.9Si-1Zr 306-397 335-446 1.0-6.5 2-30 [48]
AlZnMgCu V ≈40 ≈0.1 18.4 [49]
AlZnMgCu+4Si V ≈360 ≈120 ≈0.5 16.3
AlZnMgCu+4Si-2TiB2 V ≈450 ≈2.8 5.3 455±4.3 556±12 4.5±1.1
AA7075+0.8TiB2-1.4TiH2 H 328 360 12.0 1.38 394 461 15.3 [50]
AlZnMgCu H 44±20 0.4±0.2 ≈21.06 66±20 0.8±0.5 [12]
AlZnMgCu+1TiC-0.8TiH2 H 365±10 297±43 7.5±3.2 ≈1.38 485±41 593±24 10±2.5
Table 1  激光选区熔化成形高强铝合金晶粒细化和力学性能
Fig.2  不同扫描速率下SLM成形高强铝合金OM形貌
(a)Al-Cu-Mg合金[29];(b)Al-Zn-Mg-Cu(Al7050)合金[53]
Fig.3  SLM成形碳化物/硼化物改性高强铝合金的晶粒细化
(a)2024+TiB2[31];(b)2024+CaB6[27];(c)2024+TiC[21]
Element k m m(k-1)
Ti 9 30.7 245.6
Ta 2.5 70 105.0
Zr 2.5 4.5 6.8
Si 0.11 -6.6 5.9
Cr 2.0 3.5 3.5
Mg 0.51 -6.2 3.0
Cu 0.17 -3.4 2.8
Mn 0.94 -1.6 0.1
Table 2  铝合金中典型偏析元素的生长限制作用[71]
Fig.4  SLM成形微合金化高强铝合金的晶粒细化
(a)AlZnMgCu+Sc-Zr[44];(b)AlCuMg+Zr[34];(c)7075+ZrH2[1];(d)2024+Ti[39];(e)7075+Si[28]
Fig.5  SLM成形合金元素和形核颗粒复合改性高强铝合金晶粒细化
(a)(Si+TiB2)/AlZnMgCu[49];(b)(TiC+TiH2)/AlZnMgCu[12]
1 MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
2 ZHANG J , SONG B , WEI Q , et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35 (2): 270- 284.
3 AMATO K N , GAYTAN S M , MURR L E , et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia, 2012, 60 (5): 2229- 2239.
doi: 10.1016/j.actamat.2011.12.032
4 PLEASS C , JOTHI S . Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 24, 419- 431.
doi: 10.1016/j.addma.2018.09.023
5 XU W , BRANDT M , SUN S , et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85, 74- 84.
doi: 10.1016/j.actamat.2014.11.028
6 BERTSCH K M , MERIC DE BELLEFON G , KUEHL B , et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L[J]. Acta Materialia, 2020, 199, 19- 33.
doi: 10.1016/j.actamat.2020.07.063
7 SAINI J S , DOWLING L , TRIMBLE D , et al. Mechanical properties of selective laser melted CoCr alloys: a review[J]. Journal of Materials Engineering and Performance, 2021, 30 (12): 8700- 8714.
doi: 10.1007/s11665-021-06283-1
8 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55 (1): 22- 28.
8 ZHU H H , LIAO H L . Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55 (1): 22- 28.
9 EASTON M , STJOHN D H , SWEET L . Grain refinement and hot tearing of aluminium alloys-how to optimise and minimise[J]. Materials Science Forum, 2010, 630, 213- 221.
10 SING S L , AN J , YEONG W Y , et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34 (3): 369- 385.
doi: 10.1002/jor.23075
11 DEBROY T , WEI H L , ZUBACK J S , et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92, 112- 224.
doi: 10.1016/j.pmatsci.2017.10.001
12 LIU X H , LIU Y Z , ZHOU Z G , et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy[J]. Journal of Materials Science & Technology, 2022, 124, 41- 52.
13 KURZ W , BEZENÇON C , GÄUMANN M . Columnar to equiaxed transition in solidication processing[J]. Science and Technology of Advanced Materials, 2001, 2, 185- 191.
doi: 10.1016/S1468-6996(01)00047-X
14 HUNT J D . Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65 (1): 75- 83.
doi: 10.1016/0025-5416(84)90201-5
15 WANG P , ECKERT J , PRASHANTH K G , et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (8): 2001- 2034.
doi: 10.1016/S1003-6326(20)65357-2
16 GÄUMANN M , HENRY S , CLÉTON F , et al. Epitaxial laser metal forming: analysis of microstructure formation[J]. Materials Science and Engineering: A, 1999, 271 (1/2): 232- 241.
17 KOTADIA H R , GIBBONS G , DAS A , et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties[J]. Additive Manufacturing, 2021, 46, 102155.
doi: 10.1016/j.addma.2021.102155
18 WANG C , ZHANG J , LIU L , et al. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy[J]. Journal of Materials Science & Technology, 2011, 27 (7): 668- 672.
19 THIJS L , KEMPEN K , KRUTH J P , et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61 (5): 1809- 1819.
doi: 10.1016/j.actamat.2012.11.052
20 ÇAM G , MISTIKOGLU S . Recent developments in friction stir welding of Al-alloys[J]. Journal of Materials Engineering and Performance, 2014, 23 (6): 1936- 1953.
doi: 10.1007/s11665-014-0968-x
21 LIU X H , LIU Y Z , ZHOU Z G , et al. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC-TiH2[J]. Materials Science and Engineering: A, 2021, 813, 141171.
doi: 10.1016/j.msea.2021.141171
22 TANG Z , VOLLERTSEN F . Influence of grain refinement on hot cracking in laser welding of aluminum[J]. Welding in the World, 2014, 58 (3): 355- 366.
doi: 10.1007/s40194-014-0121-3
23 SABZI H E , MAENG S , LIANG X , et al. Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation[J]. Additive Manufacturing, 2020, 34, 101360.
doi: 10.1016/j.addma.2020.101360
24 MAIR P , KASERER L , BRAUN J , et al. Dependence of mechanical properties and microstructure on solidification onset temperature for Al2024-CaB6 alloys processed using laser powder bed fusion[J]. Materials Science and Engineering: A, 2022, 833, 142552.
doi: 10.1016/j.msea.2021.142552
25 LIU J , KOU S . Effect of diffusion on susceptibility to cracking during solidification[J]. Acta Materialia, 2015, 100, 359- 368.
doi: 10.1016/j.actamat.2015.08.064
26 LI Y , LI H , KATGERMAN L , et al. Recent advances in hot tearing during casting of aluminium alloys[J]. Progress in Materials Science, 2021, 117, 100741.
doi: 10.1016/j.pmatsci.2020.100741
27 MAIR P , GOETTGENS V S , RAINER T , et al. Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 863, 158714.
doi: 10.1016/j.jallcom.2021.158714
28 MONTERO-SISTIAGA M L , MERTENS R , VRANCKEN B , et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238, 437- 445.
doi: 10.1016/j.jmatprotec.2016.08.003
29 ZHANG H , ZHU H , QI T , et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2016, 656, 47- 54.
doi: 10.1016/j.msea.2015.12.101
30 KARG M , AHUJA B , WIESENMAYER S , et al. Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219(AlCu6Mn) additively manufactured by laser beam melting in powder bed[J]. Micromachines, 2017, 8 (1): 23.
doi: 10.3390/mi8010023
31 胡亮, 刘允中, 涂诚, 等. 纳米TiB2对激光选区熔化2024铝合金显微组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24 (4): 365- 373.
doi: 10.3969/j.issn.1673-0224.2019.04.010
31 HU L , LIU Y Z , TU C , et al. Effects of nano-TiB2 particles on microstructure and mechanical properties of AA2024 deposited by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24 (4): 365- 373.
doi: 10.3969/j.issn.1673-0224.2019.04.010
32 BIFFI C A , BASSANI P , FIOCCHI J , et al. Selective laser melting of AlCu-TiB2 alloy using pulsed wave laser emission mode: processability, microstructure and mechanical properties[J]. Materials & Design, 2021, 204, 109628.
33 MAIR P , KASERER L , BRAUN J , et al. Microstructure and mechanical properties of a TiB2-modified Al-Cu alloy processed by laser powder-bed fusion[J]. Materials Science and Engineering: A, 2021, 799, 140209.
doi: 10.1016/j.msea.2020.140209
34 ZHANG H , ZHU H , NIE X , et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134, 6- 10.
doi: 10.1016/j.scriptamat.2017.02.036
35 NIE X J , ZHANG H , ZHU H H , et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys[J]. Journal of Alloys and Compounds, 2018, 764, 977- 986.
doi: 10.1016/j.jallcom.2018.06.032
36 NIE X J , ZHANG H , ZHU H H , et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy[J]. Materials Letters, 2019, 248, 5- 7.
doi: 10.1016/j.matlet.2019.03.112
37 王凯冬, 刘允中, 程文, 等. 激光选区熔化成形含锆Al-Cu-Mg合金的显微组织与力学性能[J]. 中国有色金属学报, 2021, 31 (8): 2069- 2080.
37 WANG K D , LIU Y Z , CHENG W , et al. Microstructure and mechanical properties of Zr modified Al-Cu-Mg alloy processed by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (8): 2069- 2080.
38 WANG P , GAMMER C , BRENNE F , et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting[J]. Materials Science and Engineering: A, 2018, 711, 562- 570.
doi: 10.1016/j.msea.2017.11.063
39 TAN Q , ZHANG J , SUN Q , et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia, 2020, 196, 1- 16.
doi: 10.1016/j.actamat.2020.06.026
40 ZHANG J , GAO J , SONG B , et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting[J]. Additive Manufacturing, 2021, 38, 101829.
doi: 10.1016/j.addma.2020.101829
41 HU Z , QI Y , GAO S , et al. Aging responses of an Al-Cu alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2021, 37, 101635.
doi: 10.1016/j.addma.2020.101635
42 RESCHETNIK W , BRVGGEMANN J P , AYDINÖZ M E , et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2, 3040- 3048.
doi: 10.1016/j.prostr.2016.06.380
43 ZHOU L , PAN H , HYER H , et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158, 24- 28.
doi: 10.1016/j.scriptamat.2018.08.025
44 ZHU Z G , NG F L , SEET H L , et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation[J]. Materials Today, 2021, 52, 90- 101.
45 TAN Q , FAN Z , TANG X , et al. A novel strategy to additively manufacture 7075 aluminium alloy with selective laser melting[J]. Materials Science and Engineering: A, 2021, 821, 141638.
doi: 10.1016/j.msea.2021.141638
46 詹强坤, 刘允中, 刘小辉, 等. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49 (6): 85- 93.
46 ZHAN Q K , LIU Y Z , LIU X H , et al. Microstructures and mechanical properties of zirconium-containing 7××× aluminum alloy prepared by selective laser melting[J]. Journal of Materials Engineering, 2021, 49 (6): 85- 93.
47 CASATI R , CODURI M , RICCIO M , et al. Development of a high strength Al-Zn-Si-Mg-Cu alloy for selective laser melting[J]. Journal of Alloys and Compounds, 2019, 801, 243- 253.
doi: 10.1016/j.jallcom.2019.06.123
48 LI L , LI R , YUAN T , et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu (Al7075) alloy by Si and Zr microalloying[J]. Materials Science and Engineering: A, 2020, 787, 139492.
doi: 10.1016/j.msea.2020.139492
49 ZHOU S Y , SU Y , WANG H , et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36, 101458.
doi: 10.1016/j.addma.2020.101458
50 欧阳盛, 刘允中, 沈君剑, 等. (TiH2+TiB2)/AA7075复合粉末激光选区熔化成形的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2020, 25 (3): 197- 205.
doi: 10.3969/j.issn.1673-0224.2020.03.003
50 OUYANG S , LIU Y Z , SHEN J J , et al. Microstructure and mechanical properties of selective laser melting of (TiH2+TiB2)/AA7075 composite powders[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25 (3): 197- 205.
doi: 10.3969/j.issn.1673-0224.2020.03.003
51 刘相法, 边秀房. 铝合金组织细化用中间合金[M]. 长沙: 中南大学出版社, 2012.
51 LIU X F , BIAN X F . Master alloys for the structure refinement of aluminum alloys[M]. Changsha: Central South University Press, 2012.
52 TAN Q , LIU Y , FAN Z , et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 2020, 58, 34- 45.
53 QI T , ZHU H , ZHANG H , et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135, 257- 266.
54 TODARO C J , EASTON M A , QIU D , et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11 (1): 142.
doi: 10.1038/s41467-019-13874-z
55 KOUTNY D , PALOUSEK D , PANTELEJEV L , et al. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting[J]. Materials, 2018, 11 (2): 298.
doi: 10.3390/ma11020298
56 BARTKOWIAK K , ULLRICH S , FRICK T , et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12, 393- 401.
doi: 10.1016/j.phpro.2011.03.050
57 张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强Al-Cu-Mg合金研究[J]. 中国激光, 2016, 43 (5): 78- 84.
57 ZHANG H , NIE X J , ZHU H H , et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43 (5): 78- 84.
58 NIE X , ZHANG H , ZHU H , et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples[J]. Journal of Materials Processing Technology, 2018, 256, 69- 77.
doi: 10.1016/j.jmatprotec.2018.01.030
59 KAUFMANN N , IMRAN M , WISCHEROPP T M , et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83, 918- 926.
doi: 10.1016/j.phpro.2016.08.096
60 谢琰军, 杨怀超, 王学兵, 等. 选择性激光熔化7075合金组织和力学性能的研究[J]. 粉末冶金工业, 2018, 28 (3): 13- 18.
60 XIE Y J , YANG H C , WANG X B , et al. Study on microstructure and mechanical properties of 7075 aluminum alloy fabricated by selective laser melting[J]. Powder Metallurgy Industry, 2018, 28 (3): 13- 18.
61 MARTIN J H , YAHATA B , MAYER J , et al. Grain refinement mechanisms in additively manufactured nanofunctionalized aluminum[J]. Acta Materialia, 2020, 200, 1022- 1037.
doi: 10.1016/j.actamat.2020.09.043
62 KOTADIA H R , HARI BABU N , ZHANG H , et al. Microstructural refinement of Al-10.2%Si alloy by intensive shearing[J]. Materials Letters, 2010, 64 (6): 671- 673.
doi: 10.1016/j.matlet.2009.12.033
63 NAFISI S , EMADI D , SHEHATA M T , et al. Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy[J]. Materials Science and Engineering: A, 2006, 432 (1/2): 71- 83.
64 KOTADIA H R , QIAN M , ESKIN D G , et al. On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification[J]. Materials & Design, 2017, 132, 266- 274.
65 YUAN T , KOU S , LUO Z . Grain refining by ultrasonic stirring of the weld pool[J]. Acta Materialia, 2016, 106, 144- 154.
doi: 10.1016/j.actamat.2016.01.016
66 WEN T , LIU S Y , CHEN S , et al. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (2): 397- 404.
doi: 10.1016/S1003-6326(15)63616-0
67 KOU S , LE Y . Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy[J]. Metallurgical Transactions A, 1985, 16 (7): 1345- 1352.
doi: 10.1007/BF02670338
68 PEARCE B P , KERR H W . Grain refinement in magnetically stirred GTA welds of aluminum alloys[J]. Metallurgical Transactions B, 1981, 12 (3): 479- 486.
doi: 10.1007/BF02654317
69 RAO S R K , REDDY G M , KAMARAJ M , et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds[J]. Materials Science and Engineering: A, 2005, 404 (1/2): 227- 234.
70 ZHANG Y , GUO Y , CHEN Y , et al. Microstructure and mechanical properties of Al-12Si alloys fabricated by ultrasonic-assisted laser metal deposition[J]. Materials, 2019, 13 (1): 126.
doi: 10.3390/ma13010126
71 EASTON M , STJOHN D . Grain refinement of aluminum alloys: part Ⅰ. the nucleant and solute paradigms—a review of the literature[J]. Metallurgical and Materials Transactions A, 1999, 30 (6): 1613- 1623.
doi: 10.1007/s11661-999-0098-5
72 JIANG B , ZHENGLONG L , XI C , et al. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition[J]. Ceramics International, 2019, 45 (5): 5680- 5692.
doi: 10.1016/j.ceramint.2018.12.033
73 WANG P , GAMMER C , BRENNE F , et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties[J]. Composites Part B, 2018, 147, 162- 168.
doi: 10.1016/j.compositesb.2018.04.026
74 WEN X , WANG Q , MU Q , et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2019, 745, 319- 325.
doi: 10.1016/j.msea.2018.12.072
75 LEI S , LI X , DENG Y , et al. Microstructure and mechanical properties of electron beam freeform fabricated TiB2/Al-Cu composite[J]. Materials Letters, 2020, 277, 128273.
doi: 10.1016/j.matlet.2020.128273
76 LIU X , ZHAO Q , JI Z , et al. Effectively mitigated macro-segregation and improved tensile properties of twin-roll casting Al-Cu strips via the addition of TiC nanoparticles[J]. Journal of Materials Processing Technology, 2021, 296, 117200.
doi: 10.1016/j.jmatprotec.2021.117200
77 MOHANTY P S , GRUZLESK J E . Mechanism of grain refinement in aluminium[J]. Acta Metallurgica et Materialia, 1995, 43 (5): 2001- 2012.
doi: 10.1016/0956-7151(94)00405-7
78 XU J , LI R , LI Q . Effect of agglomeration on nucleation potency of inoculant particles in the Al-Nb-B master alloy: modeling and experiments[J]. Metallurgical and Materials Transactions A, 2021, 52 (3): 1077- 1094.
doi: 10.1007/s11661-020-06123-2
79 GREER A L , BUNN A M , TRONCHE A , et al. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B[J]. Acta Materialia, 2000, 48 (11): 2823- 2835.
doi: 10.1016/S1359-6454(00)00094-X
80 MAXWELL I , HELLAWELL A . A simple model for grain refinement during solidification[J]. Acta Metallurgica, 1975, 23, 229- 237.
doi: 10.1016/0001-6160(75)90188-1
81 万达远, 李小强, 赖佳明, 等. 基于选择性激光熔化技术7075铝合金组织性能与裂纹的研究[J]. 应用激光, 2019, 39 (1): 1- 8.
81 WAN D Y , LI X Q , LAI J M , et al. Microstructure properties and crack of 7075 aluminum alloy based on selective laser melting technology[J]. Applied Laser, 2019, 39 (1): 1- 8.
82 XU J , LI Y , HU B , et al. Development of Al-Nb-B master alloy with high Nb/B ratio for grain refinement of hypoeutectic Al-Si cast alloys[J]. Journal of Materials Science, 2019, 54 (23): 14561- 14576.
doi: 10.1007/s10853-019-03915-9
83 LI X P , JI G , CHEN Z , et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129, 183- 193.
doi: 10.1016/j.actamat.2017.02.062
84 RØYSET J , RYUM N . Scandium in aluminium alloys[J]. International Materials Reviews, 2013, 50 (1): 19- 44.
85 EASTON M , STJOHN D . Grain refinement of aluminum alloys: part Ⅱ. confirmation of, and a mechanism for, the solute paradigm[J]. Metallurgical and Materials Transactions A, 1999, 30 (6): 1625- 1633.
doi: 10.1007/s11661-999-0099-4
86 LI P , LI R , YANG H , et al. Selective laser melting of Al-3.48Cu-2.03Si-0.48Sc-0.28Zr alloy: microstructure evolution, properties and metallurgical defects[J]. Intermetallics, 2021, 129, 107008.
doi: 10.1016/j.intermet.2020.107008
87 GRIFFITHS S , ROSSELL M D , CROTEAU J , et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 143, 34- 42.
doi: 10.1016/j.matchar.2018.03.033
88 CROTEAU J R , GRIFFITHS S , ROSSELL M D , et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153, 35- 44.
doi: 10.1016/j.actamat.2018.04.053
89 MURTY B S , KORI S A , CHAKRABORTY M . Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2013, 47 (1): 3- 29.
90 ZHANG M , KELLY P , EASTON M , et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J]. Acta Materialia, 2005, 53 (5): 1427- 1438.
doi: 10.1016/j.actamat.2004.11.037
91 OTANI Y , SASAKI S . Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering: A, 2020, 777, 139079.
doi: 10.1016/j.msea.2020.139079
92 SPIERINGS A B , DAWSON K , VOEGTLIN M , et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting[J]. CIRP Annals, 2016, 65 (1): 213- 216.
doi: 10.1016/j.cirp.2016.04.057
93 SCHMIDTKE K , PALM F , HAWKINS A , et al. Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing[J]. Physics Procedia, 2011, 12, 369- 374.
doi: 10.1016/j.phpro.2011.03.047
94 SPIERINGS A B , DAWSON K , HEELING T , et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115, 52- 63.
95 YANG K V , SHI Y , PALM F , et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scripta Materialia, 2018, 145, 113- 117.
doi: 10.1016/j.scriptamat.2017.10.021
96 LI R , WANG M , YUAN T , et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319, 117- 128.
doi: 10.1016/j.powtec.2017.06.050
97 LI R , WANG M , LI Z , et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193, 83- 98.
doi: 10.1016/j.actamat.2020.03.060
98 JIA Q , ROMETSCH P , CAO S , et al. Towards a high strength aluminium alloy development methodology for selective laser melting[J]. Materials & Design, 2019, 174, 107775.
99 JIA Q , ROMETSCH P , KVRNSTEINER P , et al. Selective laser melting of a high strength Al-Mn-Sc alloy: alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171, 108- 118.
doi: 10.1016/j.actamat.2019.04.014
[1] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
[4] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[5] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[6] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[7] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[8] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[9] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[10] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[11] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[12] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[13] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[14] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[15] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn