Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 16-25    DOI: 10.11868/j.issn.1001-4381.2022.000162
  镁基复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能
常海1, 赵聪铭2, 王翠菊2,*()
1 北京科技大学 国家材料服役安全科学中心, 北京 102206
2 太原理工大学 材料科学与工程学院 先进镁基材料 山西省重点实验室, 太原 030024
Microstructure and mechanical properties of AZ91-(SiCP/AZ91) clad plate fabricated by extrusion
Hai CHANG1, Congming ZHAO2, Cuiju WANG2,*()
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
2 Shanxi Key Laboratory of Advanced Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(38708 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在300, 350, 400 ℃下成功通过挤压复合法制备多层AZ91-(SiCP/AZ91)复合板, 探究AZ91-(SiCP/AZ91)复合板中SiCP/AZ91复合材料层和AZ91层的显微组织演变、界面的演化机制和力学性能变化规律。结果表明: 热挤压复合中, AZ91-(SiCP/AZ91)多层复合板中合金层发生完全动态再结晶, 晶粒细化, 合金组织随挤压温度的升高更均匀, 而且外层合金层比内层合金层晶粒尺寸略大; SiCP/AZ91复合材料层同样发生完全动态再结晶, 晶粒尺寸小于合金层, 随着挤压温度的升高, SiCP的分布更加均匀; 不同挤压温度下AZ91-(SiCP/AZ91)复合板合金层与复合材料层界面均未出现明显的分层以及开裂现象; AZ91-(SiCP/AZ91)复合板的室温力学强度位于AZ91合金与SiCP/AZ91复合材料之间, SiCP/AZ91层中SiCP与基体界面脱粘是导致复合板材失效的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常海
赵聪铭
王翠菊
关键词 AZ91-(SiCP/AZ91)复合板材挤压显微组织力学性能    
Abstract

Multilayered AZ91-(SiCP/AZ91) clad plates were fabricated at 300, 350 ℃ and 400 ℃ successfully by extrusion. The microstructure evolution, bonding interface and the mechanical properties of the AZ91-(SiCP/AZ91) clad plates were investigated in detail. The results show that grain of both of the AZ91 layer and SiCP/AZ91 layer are refined due to the dynamic recrystallization (DRX) during the extrusion processes and the SiCP/AZ91 layer processes much finer grain size. The SiCP distribution of SiCP/AZ91 layer is improved with increasing of extrusion temperature. No obvious delamination is observed in the AZ91-(SiCP/AZ91) clad plates fabricated at different temperatures. The metallurgical bonding of the interface between AZ91 and SiCP/AZ91 basically occurs in the extrusion die. The room-temperature strength of the AZ91-(SiCP/AZ91) composite lies between the AZ91 alloy and the SiCP/AZ91, corresponding well with the rule of mixture (ROM). The inadhesion of the SiCP in the SiCP/AZ91 layer is the main reason for the failure of the AZ91-(SiCP/AZ91) clad plates during tensile test.

Key wordsAZ91-(SiCP/AZ91) clad plate    extrusion    microstructure    mechanical property
收稿日期: 2022-03-07      出版日期: 2023-01-16
中图分类号:  TB31  
  TB331  
  TG335  
基金资助:国家自然科学基金青年基金项目(52001223)
通讯作者: 王翠菊     E-mail: wangcuiju@tyut.edu.cn
作者简介: 王翠菊(1988—),女,讲师,博士,研究方向为镁合金及其复合材料,联系地址:山西省太原市太原理工大学材料科学与工程学院先进镁基材料山西省重点实验室(030024),E-mail: wangcuiju@tyut.edu.cn
引用本文:   
常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
Hai CHANG, Congming ZHAO, Cuiju WANG. Microstructure and mechanical properties of AZ91-(SiCP/AZ91) clad plate fabricated by extrusion. Journal of Materials Engineering, 2023, 51(1): 16-25.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000162      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/16
Fig.1  AZ91-(SiCP/AZ91)复合板挤压加工示意图
Fig.2  在400 ℃挤压的AZ91-(SiCP/AZ91)复合板中合金层的显微组织和晶粒尺寸分布图
(a),(b)外层合金;(c),(d)内层合金
Fig.3  不同温度下挤压的AZ91-(SiCP/AZ91)复合板中“A”层的OM照片
(a),(b)300 ℃;(c),(d)350 ℃;(e),(f)400 ℃
Fig.4  不同温度下挤压的AZ91-(SiCP/AZ91)复合板中“A”层的SEM照片
(a),(b)300 ℃;(c),(d)350 ℃;(e),(f)400 ℃
Point Atom fraction/%
Mg Al Zn
1 68.8 31.1 0.1
2 67.1 31.3 1.6
3 73.4 25.1 1.5
4 76.9 21.9 1.2
Table 1  图 4中所示4个点的EDS结果
Fig.5  不同温度下挤压的AZ91-(SiCP/AZ91)复合板中“C”层的OM照片
(a),(b)300 ℃;(c),(d)350 ℃;(e),(f)400 ℃
Fig.6  不同温度下挤压的AZ91-(SiCP/AZ91)复合板中“C”层的SEM照片
(a)300 ℃;(b)350 ℃;(c)400 ℃
Fig.7  在不同温度下挤压的AZ91-(SiCP/AZ91)复合板中内层界面的OM照片
(a)300 ℃;(b)350 ℃;(c)400 ℃
Fig.8  350 ℃挤压时AZ91-(SiCP/AZ91)复合板的料头形貌及挤压过程中内层界面的OM照片
(a)宏观形貌;(b), (c), (d), (e), (f)分别为图(a)中位置1, 2, 3, 4, 5的显微组织
Fig.9  AZ91-(SiCP/AZ91)复合板的显微硬度
(a)400 ℃挤压复合板;(b)不同温度下挤压的复合板
Fig.10  不同温度下挤压的AZ91-(SiCP/AZ91)复合板的室温拉伸性能
(a)室温拉伸曲线;(b)强度;(c)伸长率和弹性模量
Fig.11  400 ℃下挤压AZ91-(SiCP/AZ91)复合板断口形貌
(a)断口侧面;(b)界面处;(c)复合材料层侧面;(d)复合材料层正面
1 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57, 1362- 1379.
doi: 10.11900/0412.1961.2021.00349
1 PAN F S , JIANG B . Development and application of plastic processing technologies of magnesium alloys[J]. Acta Metallugica Sinica, 2021, 57, 1362- 1379.
doi: 10.11900/0412.1961.2021.00349
2 王慧远, 夏楠, 布如宇, 等. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57, 1429- 1437.
doi: 10.11900/0412.1961.2021.00347
2 WANG H Y , XIA N , BU R Y , et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys[J]. Acta Metallugica Sinica, 2021, 57, 1429- 1437.
doi: 10.11900/0412.1961.2021.00347
3 曾小勤, 陈义文, 王静雅, 等. 高性能稀土镁合金研究新进展[J]. 中国有色金属学报, 2021, 31, 2963- 2975.
3 ZENG X Q , CHEN Y W , WANG J Y , et al. Research progress of high-performance rare earth magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2021, 31, 2963- 2975.
4 DENG K K , WANG C J , NIE K B , et al. Recent research on the deformation behavior of particle reinforced magnesium matrix composite: a review[J]. Acta Metall Sin (Engl Lett), 2019, 32, 413- 425.
5 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32 (2): 317- 322.
5 MA L M , ZHANG J Z , YUE G Q , et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32 (2): 317- 322.
6 SHI Q X , WANG C J , DENG K K , et al. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone[J]. Journal of Materials Science & Technology, 2021, 60, 8- 20.
7 OHSAKI S , KATO S , TSUJI N , et al. Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process[J]. Acta Materialia, 2007, 55 (8): 2885- 2895.
doi: 10.1016/j.actamat.2006.12.027
8 WANG H W , WANG C J , DENG K K , et al. Microstructure and mechanical properties of Al/Mg/Al composite sheets containing trapezoidal shaped intermediate layer[J]. Materials Science and Engineering: A, 2021, 811, 140989.
9 JAMAATI R , AMIRKHANLOU S , TOROGHINEJAD M R , et al. Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods[J]. Journal of Materials Engineering and Performance, 2012, 21 (7): 1249- 1253.
10 WU Y , FENG B , XIN Y , et al. Microstructure and mechanical behavior of a Mg AZ31/Al7050 laminate composite fabricated by extrusion[J]. Materials Science and Engineering: A, 2015, 640, 454- 459.
11 CHEN L , TANG J W , ZHAO G Q , et al. Fabrication of Al/Mg/Al laminate by a porthole die co-extrusion process[J]. Journal of Materials Processing Technology, 2018, 258, 165- 173.
12 MAHMOODKHANI Y , WELLS M A . Co-extrusion process to produce Al-Mg eutectic clad magnesium products at elevated temperatures[J]. Journal of Materials Processing Technology, 2016, 232, 175- 183.
13 ZHA M , ZHANG H M , WANG C , et al. Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg-Al-Zn alloys[J]. Journal of Alloys and Compounds, 2017, 728, 682- 693.
14 WANG C J , DENG K K , NIE K B , et al. Competition behavior of the strengthening effects in as-extruded AZ91 matrix: influence of pre-existed Mg17Al12 phase[J]. Materials Science and Engineering: A, 2016, 656, 102- 110.
15 LEE J U , KIM S H , KIM Y J , et al. Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy[J]. Materials Science and Engineering: A, 2018, 714, 49- 58.
16 SUN X F , WANG C J , DENG K K , et al. High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase[J]. Journal of Alloys and Compounds, 2018, 732, 328- 335.
17 FAN Y D , DENG K K , WANG C J , et al. Work hardening and softening behavior of Mg-Zn-Ca alloy influenced by deformable Ti particles[J]. Materials Science and Engineering: A, 2022, 833, 142336.
18 HASSAN S F , HO K F , GUPTA M . Increasing elastic modulus, strength and CTE of AZ91 by reinforcing pure magnesium with elemental copper[J]. Materials Letters, 2004, 58 (16): 2143- 2146.
19 WANG X J , HU X S , NIE K B , et al. Hot extrusion of SiCp/AZ91 Mg matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (8): 1912- 1917.
[1] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[2] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[3] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[4] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[5] 岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
[6] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[7] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[10] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[13] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[14] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[15] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn