Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 52-63    DOI: 10.11868/j.issn.1001-4381.2022.000322
  综述 本期目录 | 过刊浏览 | 高级检索 |
搅拌摩擦沉积增材技术研究进展
陈刚1, 武凯1,*(), 孙宇1, 贾贺鹏1, 朱志雄2, 胡峰峰2
1 南京理工大学 机械工程学院, 南京 210094
2 航天工程装备(苏州)有限公司, 江苏 苏州 215200
Research progress in additive friction stir deposition
Gang CHEN1, Kai WU1,*(), Yu SUN1, Hepeng JIA1, Zhixiong ZHU2, Fengfeng HU2
1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Aerospace Engineering Equipment (Suzhou) Co., Ltd., Suzhou 215200, Jiangsu, China
全文: PDF(12245 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

搅拌摩擦沉积增材(additive friction stir deposition,AFSD)技术是一种新兴固相增材制造技术,采用金属棒材、粉材、丝材为增材材料,增材过程中依靠增材材料与板材摩擦产生摩擦热以及材料剧烈变形产生的塑性变形热形成黏塑性沉积层,沉积层逐层堆积形成三维实体结构件;基于其固相特征,具有熔覆增材技术不可比拟的优势,目前已成为增材制造领域的研究热点。本文从设备研制、微观组织演变、材料流动特性、力学性能变化四个方面综述了AFSD技术最新国内外研究进展;分析了该技术应用于工程实际的可行性,展望了在增材制造、材料修复、零件加固、制造金属涂层领域的应用前景;最后指出了产热机制、材料流动特性、辅助优化工艺、智能化设备研制等为未来的研究方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
武凯
孙宇
贾贺鹏
朱志雄
胡峰峰
关键词 搅拌摩擦沉积增材微观组织演变材料流动特性力学性能变化    
Abstract

The additive friction stir deposition (AFSD) technology is a new solid-state additive manufacturing technology. The metal bars, powders, and wires are used as feedstock. During the additive process, the friction heat generated by the friction between feedstock and the plate and the plastic deformation heat generated by the severe deformation of feedstock form a viscoplastic deposition layer. The deposition layer is stacked layer by layer to form three-dimensional parts. Because of its solid phase characteristics, it has many advantages over fused-based metal additive technologies and has become a research hotspot in the field of additive manufacturing. In this paper, the latest research progress of AFSD technology at home and abroad was reviewed from four aspects of equipment development, microstructure evolution, material flow characteristics and mechanical properties change. The feasibility of the application of this technology in engineering practice was analyzed and the application prospect in the field of metal coating reinforcement for material repair parts of additive manufacturing was forecasted. Finally, it was pointed out that the heat generation mechanism, material flow characteristics, auxiliary optimization process, and intelligent equipment development are the future research directions.

Key wordsadditive friction stir deposition    microstructure evolution    material flow characteristics    mechanical properties change
收稿日期: 2022-04-19      出版日期: 2023-01-16
中图分类号:  TG44  
基金资助:江苏省科技成果转化专项项目(BA2019029);苏州市重点研发产业化重点项目(SGC201914)
通讯作者: 武凯     E-mail: wukai@njust.edu.cn
作者简介: 武凯(1972-), 男, 教授, 博士, 研究方向为先进机械装备的设计与制造技术、CAD/CAE/CAM技术、机械装备的可靠性设计与制造技术等, 联系地址: 江苏省南京市孝陵卫200号南京理工大学机械工程学院(210094), E-mail: wukai@njust.edu.cn
引用本文:   
陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
Gang CHEN, Kai WU, Yu SUN, Hepeng JIA, Zhixiong ZHU, Fengfeng HU. Research progress in additive friction stir deposition. Journal of Materials Engineering, 2023, 51(1): 52-63.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000322      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/52
Fig.1  工作原理图[7-8]
(a)搅拌摩擦焊;(b)摩擦堆焊;(c)棒料搅拌摩擦沉积增材;(d)粉材或丝材搅拌摩擦沉积增材
Fig.2  MELD公司搅拌摩擦沉积固相增材设备[17]
(a)AFSD设备B8;(b)AFSD设备L3
Fig.3  天津大学搅拌摩擦沉积固相增材设备和实验成果[22]
(a)AFSD设备;(b)AFSD实验成果A;(c)AFSD实验成果B
Feed material Tool rotation rate/(r·min-1) Travel velocity/(mm·min-1) Material feed rate/(mm·min-1) Grain size/μm Micro-hardness(HV) Reference
6061 300-420 127-229 66-122 15±4 112±2.65 [23]
AA2024 300 152.4 50.8 1-2 [24]
Ti-6AL-4V 325-350 79-127 40.4-44.7 26-64 325-335 [25]
AA2024 300 120 51 4.9 [26]
6061 200/600 60/180 20/60 10-16 45.4-67.3 [27]
Cu 300/600 60/180 20/60 10-27 38-72.7 [27]
6061 300 127 69.9 9.1±5.8 64 [28]
7075 220-360 50.8-177.8 50.8-94.0 55-135 [29]
2219 200 101.6 88.9 8.3 83 [30]
7075 225 50.8 50.8 4.33 60-105 [31]
6061 325 78 126-204 5-25 105.2 [32]
SS304 1000 360 45 3.6-4.2 [33]
Aermet 100 375-600 38.1-121.92 17.78-109.73 364-832 [34]
316L 440 2.5 25 32±0.9 [35]
WE43 325-350 101.6-152.4 50.8-63.5 2.7±2 81±3.8 [36]
Table 1  AFSD工艺参数总结
Fig.4  晶界图和晶粒取向差图[23-24]
(a)慢主轴横向移动速度和慢增材材料进给速度对应的晶粒取向差图;(b)慢主轴横向移动速度和慢增材材料进给速度对应的晶界图;(c)快主轴横向移动速度和快增材材料进给速度对应的晶粒取向差图;(d)快主轴横向移动速度和快增材材料进给速度对应的晶界图;(e) AA2024铝合金晶粒取向差图(小角度晶界(LAGB)定义为取向差2°到10°用红线表示,大角度晶界(HAGB)被定义为取向差大于10°用黑线表示)
Fig.5  材料流动轨迹图像[26-27]
(a)基于X射线计算机断层扫描的AA2024沉积在AA6061基板上的俯视图;(b)增材层材料向上流动图解;(c)Al-Mg-Si在AFSD过程中的材料流动;(d)Cu在AFSD过程中的材料流动
Technique Characteristics of material flow Reference
FSW Material flow is mainly concentrated around the stirring pin [41-44]
Material is subjected to lateral constraints imposed by workpieces
FS From the advancing side to the retreating side and terminates at the center [46]
The flow in the top layers is influenced by the rotation of the consumable rod and the flow at the bottom layers is influenced by substrate
AFSD The deposited material without mechanical constraint in the lateral direction [26]
The deposited material upward flow after flow from the tool shoulder surface
Table 2  材料流动特性总结
Fig.6  AFSD技术制造的零件及部分应用领域[17, 32, 39, 51]
1 FRAZIER W E . Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23 (6): 1917- 1928.
doi: 10.1007/s11665-014-0958-z
2 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
2 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
3 石磊, 李阳, 肖亦辰, 等. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50 (1): 1- 14.
3 SHI L , LI Y , XIAO Y C , et al. Research progress of metal solid phase additive manufacturing based on friction stir[J]. Journal of Materials Engineering, 2022, 50 (1): 1- 14.
4 ZHANG X , XIAO Z , YU W , et al. Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy[J]. Virtual and Physical Prototyping, 2021, 17 (2): 406- 418.
5 AVERSA A , MARCHESE G , MANFREDI D , et al. Laser powder bed fusion of a high strength Al-Si-Zn-Mg-Cu alloy[J]. Metals, 2018, 8 (5): 300.
doi: 10.3390/met8050300
6 SHAH L H , WALBRIDGE S , GERLICH A . Tool eccentricity in friction stir welding: a comprehensive review[J]. Science and Technology of Welding and Joining, 2019, 24 (6): 566- 578.
doi: 10.1080/13621718.2019.1573010
7 BERNARD D , HATTINGH D G , GOOSEN W E , et al. High speed friction stir welding of 5182-H111 alloy: temperature and microstructural insights into deformation mechanisms[J]. Metals and Materials International, 2021, 28 (7): 2821- 2836.
8 ZHANG J, UPADHYAY P, HOVANSKI Y, et al. High-speed FSW aluminum alloy 7075 microstructure and corrosion properties[C]//Proceedings of the 9th Symposium on Friction Stir Welding and Processing (FSW/P). San Diego: CA, 2017: 125-135.
9 RAMULU P J , KAILAS S V , NARAYANAN R G . Influence of tool rotation speed and feed rate on the forming limit of friction stir welded AA6061-T6 sheets[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2013, 227 (3): 520- 541.
doi: 10.1177/0954406212463996
10 MISHRA R S , MA Z . Friction stir welding and processing[J]. Materials Science and Engineering: Reports, 2005, 50 (1/2): 1- 78.
11 KLOPSTOCK H, NEELANDS A R. An improved method of joining or welding metals: UK572789[P], 1941-10-17.
12 BEDFORD G , VITANOV V , VOUTCHKOV I . On the thermo-mechanical events during friction surfacing of high speed steels[J]. Surface and Coatings Technology, 2001, 141 (1): 34- 39.
doi: 10.1016/S0257-8972(01)01129-X
13 GARCIA D , HARTLEY W D , RAUCH H A , et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: a comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34, 101386.
doi: 10.1016/j.addma.2020.101386
14 STUBBLEFIELD G G , FRASER K , PHILLIPS B J , et al. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D)[J]. Materials & Design, 2021, 202, 109514.
15 WENDELL T V, LIN W, ALEXANDER D G. Solid state additive manufacturing system: US20090200275A1[P]. 2009-08-13.
16 CALVERT J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Virginia: Virginia Polytechnic Institute, 2015.
17 MELD公司. MELD公司官网[EB/OL] (2020)[2022-04-15]. http://meldmanufacturing.com/.
17 MELD corporation. The official website of MELD corporation[EB/OL]. (2020)[2022-04-15]. http://meldmanufacturing.com/.
18 万龙, 温琦. 一种搅拌摩擦增材装置及增材制造方法: CN112496522B[P]. 2021-05-25.
18 WAN L, WEN Q. A friction stir additive device and additive manufacturing method: CN112496522B[P]. 2021-05-25.
19 树西, 万龙, 吕宗亮. 一种颗粒式搅拌摩擦增材制造装置及方法: CN113118612A[P]. 2021-07-16.
19 SHU X, WAN L, LYU Z L. A particle friction stir additive manufacturing device and method: CN113118612A[P]. 2021-07-16.
20 石磊, 李阳, 肖亦辰, 等. 一种填丝静轴肩搅拌摩擦焊接与增材制造装置及方法: CN112958902A[P]. 2021-06-15.
20 SHI L, LI Y, XIAO Y C, et al. A friction stir welding and additive manufacturing device and method for filler wire static shoulder: CN112958902A[P]. 2021-06-15.
21 黄永宪, 谢聿铭, 孟祥晨. 一种连续进给送料搅拌摩擦增材制造装置及增材制造方法: CN113172331A[P]. 2021-07-27.
21 HUANG Y X, XIE Y M, MENG X C. A continuous feeding friction stir additive manufacturing device and additive manufacturing method: CN113172331A[P]. 2021-07-27.
22 南极熊3D打印网. 天津大学成功开发固相摩擦挤压增材制造技术及设备[EB/OL]. (2022-01-27)[2022-04-15]. http://www.nanjixiong.com/thread-152024-1-1.html.
22 Nan ji Xiong 3D printing network. Tianjin University successfully developed solid-phase friction extrusion additive manufacturing technology and equipment[EB/OL]. (2022-01-27)[2022-04-15]. http://www.nanjixiong.com/thread-152024-1-1.html.
23 PHILLIPS B J , AVERY D Z , LIU T , et al. Microstructure-deformation relationship of additive friction stir-deposition Al-Mg-Si[J]. Materialia, 2019, 7, 100387.
doi: 10.1016/j.mtla.2019.100387
24 PERRY M E J , RAUCH H A , GRIFFITHS R J , et al. Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition[J]. Materialia, 2021, 18 (12): 101159.
25 AGRAWAL P , HARIDAS R S , YADAV S , et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing, 2021, 47, 102259.
doi: 10.1016/j.addma.2021.102259
26 PERRY M E J , GRIFFITH R J , GRCIA D , et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition[J]. Additive Manufacturing, 2020, 35, 101293.
doi: 10.1016/j.addma.2020.101293
27 GRIFFITHS R J , GARCIA D , SONG J , et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process-microstructure linkages[J]. Materialia, 2021, 15, 100967.
doi: 10.1016/j.mtla.2020.100967
28 PHILLIPS B J , MASON C J T , BECK S C , et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 295, 117169.
doi: 10.1016/j.jmatprotec.2021.117169
29 MASON C J T , RODRIGUEZ R I , AVERY D Z , et al. Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminum alloy[J]. Additive Manufacturing, 2021, 40, 101879.
doi: 10.1016/j.addma.2021.101879
30 ANDERSON-WED GE K , AVERY D Z , DANIEWICZ S R , et al. Characterization of the fatigue behavior of additive friction stir-deposition AA2219[J]. International Journal of Fatigue, 2021, 142, 105951.
doi: 10.1016/j.ijfatigue.2020.105951
31 AVERY D Z , PHILLIPS B J , MASON C J T , et al. Influence of grain refinement and microstructure on fatigue behavior for solid-state additively manufactured Al-Zn-Mg-Cu alloy[J]. Metallurgical and Materials Transactions A, 2020, 51 (4): 1- 18.
32 MARTIN L P , LUCCITTI A , WALLUK M . Repair of aluminum 6061 plate by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118 (3): 759- 773.
33 GOTAWALA N , MISHRA N K , SHRIVASTAVA A . Solid-state depositions of multilayer SS304 by friction stir metal deposition[J]. Materials Letters, 2022, 314, 131881.
doi: 10.1016/j.matlet.2022.131881
34 CHOU K , EFF M , COX C D , et al. Optical image and Vickers hardness dataset for repair of 1080 steel using additive friction stir deposition of Aermet 100[J]. Data in Brief, 2022, 41, 107862.
doi: 10.1016/j.dib.2022.107862
35 BELADI H , FARABI E , HODGSON P D , et al. Microstructure evolution of 316L stainless steel during solid-state additive friction stir deposition[J]. Philosophical Magazine, 2022, 102 (7): 618- 633.
doi: 10.1080/14786435.2021.2011980
36 WILLIAMS M B , ROBINSON T W , WILLIAMSON C J , et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy We43[J]. Metals, 2021, 11 (11): 1739.
doi: 10.3390/met11111739
37 MUKHOPADHYAY A , SAHA P . Mechanical and microstructural characterization of aluminium powder deposit made by friction stir based additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 281, 116648.
doi: 10.1016/j.jmatprotec.2020.116648
38 RIVERA O G , ALLISON P G , JORDON J B , et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering: A, 2017, 694, 1- 9.
doi: 10.1016/j.msea.2017.03.105
39 GRIFFITHS R J , PETERSEN D T , GARCIA D , et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy[J]. Applied Sciences, 2019, 9 (17): 3486.
doi: 10.3390/app9173486
40 COLLIGAN K . Material flow behavior during friction stir welding of aluminum[J]. Welding, 1999, 78, 229- 237.
41 HUANG Y , WANG Y , WAN L , et al. Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87 (1): 1115- 1123.
42 EDWARDS P D , RAMULU M . Material flow during friction stir welding of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2015, 218, 107- 115.
doi: 10.1016/j.jmatprotec.2014.11.046
43 LORRAIN O , FAVIER V , ZAHROUNI H , et al. Understanding the material flow path of friction stir welding process using unthreaded tools[J]. Journal of Materials Processing Technology, 2010, 210 (4): 603- 609.
doi: 10.1016/j.jmatprotec.2009.11.005
44 NANDAN R , ROY G , LIENERT T , et al. Three-dimensional heat and material flow during friction stir welding of mild steel[J]. Acta Materialia, 2007, 55 (3): 883- 895.
doi: 10.1016/j.actamat.2006.09.009
45 LI J P , SHEN Y F , HOU W T , et al. Friction stir welding of Ti-6Al-4V alloy: friction tool, microstructure, and mechanical properties[J]. Journal of Manufacturing Processes, 2020, 58, 344- 354.
doi: 10.1016/j.jmapro.2020.08.025
46 KHALID RAFI H , PHANIKUMAR G , PRASAD RAO K . Material flow visualization during friction surfacing[J]. Metallurgical and Materials Transactions A, 2011, 42 (4): 937- 939.
doi: 10.1007/s11661-011-0614-2
47 唐文珅, 杨新岐, 田超博, 等. 工艺参数对铝合金摩擦挤压增材组织及性能的影响[J]. 航空材料学报, 2022, 42 (1): 1- 9.
47 TANG W K , YANG X Q , TIAN C B , et al. Effects of process parameters on microstructure and properties of aluminum alloy fabricated by friction extrusion additive manufacturing[J]. Journal of Aeronautical Materials, 2022, 42 (1): 1- 9.
48 BECK S C , RUTHERFORD B A , AVERY D Z , et al. The effect of solutionizing and artificial aging on the microstructure and mechanical properties in solid-state additive manufacturing of precipitation hardened Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 2021, 819, 141351.
doi: 10.1016/j.msea.2021.141351
49 OTANI Y , SASAKI S . Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering: A, 2020, 777, 139079.
doi: 10.1016/j.msea.2020.139079
50 LANGEBECK A , BOHLEN A , RENTSCH R , et al. Mechanical properties of high strength aluminum alloy EN AW-7075 additively manufactured by directed energy deposition[J]. Metals, 2020, 10 (5): 579.
doi: 10.3390/met10050579
51 GOPAN V , WINS L D K , SURENDRAN A . Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: a review[J]. Cirp Journal of Manufacturing Science and Technology, 2021, 32, 228- 248.
doi: 10.1016/j.cirpj.2020.12.004
52 GARRIDO B , DOSTA S , CANO I G . Bioactive glass coatings obtained by thermal spray: current status and future challenges[J]. Boletín de la Sociedad Española de Cerámicay Vidrio, 2021, 1- 15.
53 GATEMAN S M , ALIDOKHT S A , MENA-MORCILLO E , et al. Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies[J]. Surface and Coatings Technology, 2021, 426, 127790.
doi: 10.1016/j.surfcoat.2021.127790
54 GOVANDE A R , CHANDAK A , SUNIL B R , et al. Carbide-based thermal spray coatings: a review on performance characteristics and post-treatment[J]. International Journal of Refractory Metals and Hard Materials, 2022, 103, 105772.
doi: 10.1016/j.ijrmhm.2021.105772
55 LIAO T Y , BIESIEKIERSKI A , BERNDT C C , et al. Multifunctional cold spray coatings for biological and biomedical applications: a review[J]. Progress in Surface Science, 2022, 97 (2): 100654.
56 YAO H L , HU X Z , YI Z H , et al. Microstructure and improved anti-corrosion properties of cold-sprayed Zn coatings fabricated by post shot-peening process[J]. Surface and Coatings Technology, 2021, 422, 127557.
57 LIU S , BOR T , VAN DER STELT A , et al. Friction surface cladding: an exploratory study of a new solid state cladding process[J]. Journal of Materials Processing Technology, 2016, 229, 769- 784.
58 HARTLEY W D , GARCIA D , YODER J K , et al. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 291, 117045.
59 YU H Z , JONES M E , BRADY G W , et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition[J]. Scripta Materialia, 2018, 153, 122- 130.
60 YU H Z , MISHRA R S . Additive friction stir deposition: a deformation processing route to metal additive manufacturing[J]. Materials Research Letters, 2021, 9 (2): 71- 83.
[1] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[2] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[3] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn