Abstract:Two kinds of micrometer sized original particles were annealed in different conditions to prepare Co particles with different crystal structures and different particle sizes. The evolution of the crystal structures and morphologies of particles was analyzed by X-ray diffraction apparatus and scanning electron microscope. It is indicated that almost single FCC phase can be obtained if proper annealing conditions are involved during the annealing of Co particles. There is a critical size of phase stability, below which HCP-FCC transition of Co particles does not occur during cooling and high temperature phase can stably exist at room temperature. The critical size is affected by the state of surface/interface, i.e. lower surface/interface energy gives rise to a smaller critical size. In the view of the suppression of martensitic transformation by extra pressure, the effect of the particle size and the state of surface/interface on the phase stability of Co particles is discussed.
[1] KAJIWARA S, OHNO S, HONMA K. Martensitic transformation in ultrafine particles of metals and alloys[J]. Philosophical Magazine A: Physics of Condensed Matter, 1991, 63(4): 625-644.[2] 徐祖耀, 金学军. 纳米材料的马氏体相变[J]. 热处理, 1998, (4): 1-5.[3] 徐祖耀. 纳米材料的相变[J]. 上海金属, 2002, 24(1): 11-20.[4] PUNTES V F, KRISHNAN K M, ALIVISATOS A P. Colloidal nanocrystal shape and size control: The case of cobalt[J]. Science, 2001, 291 (5511): 2115-2117.[5] WEISS N, CREN T, EPPLE M, et al. Uniform magnetic properties for an ultrahigh-density lattice of noninteracting Co nanostructures[J]. Physical Review Letters, 2005, 95(15): 157204-157207.[6] WOHLFARTH E P. Handbook of Magnetic Materials[M]. Holland: North-Holland Publishing Company, 1980.[7] HUANG J Y, WU Y K, YE H Q. Phase transformation of cobalt induced by ball milling[J]. Applied Physics Letters, 1995, 66(3): 308-310.[8] HUANG J Y, WU Y K, YE H Q. Allotropic Transformation of cobalt induced by ball milling[J]. Acta Materialia, 1996, 44(3): 1201-1209.[9] SATO H, KITAKAMI O, SAKURAI T, et al. Structure and magnetism of HCP-Co fine particles[J]. Journal of Applied Physics, 1997, 81(4): 1858-1862.[10] KITAKAMI O, SATO H, SHIMADA Y, et al. Size effect on the crystal phase of cobalt fine particles[J]. Physical Review B, 1997, 56(21): 13849-13854.[11] WEN C S, HUANG B X, CHEN Z, et al. Martensite and its reverse transformation in nanocrystalline bulk Co[J]. Materials Science and Engineering A, 2006, 438-440: 420-426.[12] ZU X, BIRRINGER R, HERR U, et al. X-ray diffraction studies of the structure nanometer-sized crystalline materials[J]. Physical Review B, 1987, 35(17): 9085-9090.[13] SUI M L, LU K, DENG W, et al. Positron-lifetime study of polycrystalline Ni-P alloys with ultrafine grains[J]. Physical Review B, 1991, 44(12): 6466-6471.[14] 孟庆平, 戎咏华, 徐祖耀. 金属纳米晶的相稳定性[J]. 中国科学(E辑), 2002, 32(4): 457-464.[15] ZHAO X Q, VEINTEMILLAS-VERDAGUER S, BOMATI-MIGUEL O, et al. Thermal history dependence of the crystal structure of Co fine particles[J]. Physical Review B, 2005, 71(2): 024106-024112.[16] MA G J, ZHAO X Q, VEINTEMILLAS-VERDAGUER S. Size dependent allotropic transition of Co fine particles[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(7): 4472-4477.[17] RONG Y H. Phase transformations and phase stability in nanocrystalline materials[J]. Current Opinion in Solid State and Materials Science, 2005, 9(6): 287-295.[18] RONG Y H, MENG Q P, ZHANG Y L, et al. Phase stability and its intrinsic conditions in nanocrystalline materials[J]. Materials Science and Engineering A, 2006, 438-440: 414-419.[19] MENG Q, ZHOU N, RONG Y H, et al. Size effect on the Fe nanocrystalline phase transformation[J]. Acta Materialia, 2002, 50(18): 4563-4570.[20] 徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999.[21] DELAEY L. Phase Transformations in Materials[M]. New York: VCH Publishers, 1995.[22] TYSON M R. Surface energies of solid metals[J]. Canadian Metallurgical Quarterly, 1975, 14(4): 307-314.