Abstract:In the rolling process of aluminum-silicon alloy, there was a problem of silicon grains stress concentration which results from the deformation resistance of silicon grain was bigger than aluminum matrix. Aiming at this problem, the finite element model of reinforcement particles is established in rolling and the stress and strain contours and curves of silicon grains and aluminum body are researched by the finite element procedures. The problem that the stress of reinforcement particles in rolling process can not be analyzed quantitatively by ordinary experiment is also solved. The results show that the strain of the aluminum matrix near the grains is greater than other parts of the Al matrix and far greater than the strain of silicon grain, which indicates the metal accumulation phenomenon appeared on the grains. The stress value of silicon grain is greater than aluminum matrix, which indicates stress concentration phenomenon appeared because of the accumulation of the metal near the grains. After the simulation, the feasibility of numerical simulation method and the accuracy of simulation results can be validated indirectly by the method of observing the feature of tensile fracture with the electron microscopy and analyze the energy spectrum.
[1] 许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制[D].长春:吉林大学,2007.11-12.[2] 赵冠中,毛大恒,黎正华,等.汽车热交换器用三层复合铝箔[J].现代制造工程,2009,(11):54-56.ZHAO G J,MAO D H,LI Z H,et al. Automobile transfer 3-layer composite aluminum foil[J]. Modern Manufacturing Engineering,2009,(11):54-56.[3] TORRALBA J M,DA COSTA C E,VELASCO F.P/M aluminum matrix composites: an overview[J]. Journal of Materials Processing Technology,2003,133(1-2):203-206.[4] 白桦,孟宪举,陈连生,等.基于DEFORM下棒材热轧过程的数值模拟及缺陷[J].河北理工大学学报,2008, 30 (2):43-44.BAI H,MENG X J,CHEN L S,et al. Numerical simulation and failure analysis of rod hot rolling process using DEFORM[J].Journal of Hebei Polytechnic University, 2008,30(2):43-44.[5] 白桦.棒材热轧过程的数值模拟及缺陷预测[D].唐山:河北理工大学,2008.23-24.[6] 晏义伍.颗粒尺寸对SiCp/Al复合材料性能的影响规律及其数值模拟[D].哈尔滨:哈尔滨工业大学,2007.18-19.[7] YAN Y W, GENG L, LI A B. Effects of particle size on residual stresses of metal matrix composites[J]. Transactions of Nonferrous Metals Society of China,2006:1-2.[8] KORTHAUER M,ATAYA S,MAGD E.Effects of deformed volume, volume fraction and particle size on the deformation behaviour of W/Cu composites[J]. Theoretical and Applied Fracture Mechanics, 2006,46(1):38-45.[9] LEWANDOWSKI J J, LIU S,LIU C. Observation on the effects of particulate size and superposed pressure on deformation of metal matrix composites[J]. Scripta Metallurgica et Materialia,1991, 25 (1):21-26.[10] ARPON R,MOLINA M,NARCISO J.Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions[J]. Acta Materialia,2003, 54 (11):3145-3156.[11] HU M S.Some effects of particle size on the flow behavior of Al-SiCp composites[J]. Scripta Metallurgica et Materialia,1991, 25 (3):695-700.[12] LEE S M, SHINVPURIR. Investigation of two square-to-round multipass rolling sequences by the slab-finite element method[J]. Int J Math Tools Manufact,1992,32 (3):315-320.[13] SHINVPURI R, SHIN W. A methodology for rolling optimization for multipass rolling shape[J]. Int J Math Tools Manufact,1992, 32 (5):671-679.[14] 陈仙凤.基于DEROM-3D平台1Cr13板材热轧数值模拟研究[D].杭州:浙江工业大学,2008.73-74.[15] 吕日松,董万鹏,陈军.金属塑性成形缺陷的数值模拟预测研究[J].模具技术,2003,(3):3-4. LV R S,DONG W P,CHEN J. The research on numerical simulation in the prediction of metal plastic forming defects [J]. Mould Technology,2003,(3):3-4.[16] 陈彦博,赵红亮,翁康荣.有色金属轧制技术[M].北京:化学工业出版社,2007.146-149.[17] 李传民,王向丽,闫华军,等.金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.89-90.[18] 邓少奎.2E12高强耐疲劳铝合金轧制工艺和疲劳性能的研究[D].秦皇岛:燕山大学,2007.18-21.[19] 冯端.金属物理学第二卷相变[M].北京:科学出版社,1990.150-152.[20] 游志勇,赵浩峰,李建春,等.Zn-Al-Si合金的断裂特性研究[J].铸造技术, 2009, 30 (7):892-895. YOU Z Y,ZHAO H F,LI J C,et al. Research on the fracture performance of Zn-Al-Si alloys[J]. Casting Technique,2009, 30(7):892-895.