Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (3): 51-54,60    DOI: 10.3969/j.issn.1001-4381.2013.03.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
铝硅合金轧制中增强体颗粒应力集中数值模拟
赵彦玲, 周凯, 车万博, 铉佳平, 车春雨
哈尔滨理工大学 机械动力工程学院,哈尔滨 150080
Numerical Simulation of Reinforced Particle Stress Concentration in Al-Si Alloy Rolling
ZHAO Yan-ling, ZHOU Kai, CHE Wan-bo, XUAN Jia-ping, CHE Chun-yu
School of Mechanical Engineering, Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(1475 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对铝硅合金轧制过程中,硅晶粒相对铝基体变形抗力大产生应力集中的问题。利用有限元方法,建立了针对轧制过程中增强体颗粒的有限元模型,研究了硅晶粒及铝基体应力、应变云图及曲线。解决了普通实验无法定量分析轧制过程中增强体颗粒受力的问题。结果表明:临近晶粒处铝基体应变值大于其他部位铝基体且远大于硅晶粒处应变,说明在晶粒处有金属堆积现象;晶粒处应力值大于铝基体,说明由于晶粒附近的金属堆积,导致应力集中现象的产生。模拟结束后,通过扫描电镜观察拉伸试样断口形貌及能谱分析间接验证数值模拟方法的可行性和模拟结果的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵彦玲
周凯
车万博
铉佳平
车春雨
关键词 铝硅合金增强体颗粒金属堆积应力集中数值模拟    
Abstract:In the rolling process of aluminum-silicon alloy, there was a problem of silicon grains stress concentration which results from the deformation resistance of silicon grain was bigger than aluminum matrix. Aiming at this problem, the finite element model of reinforcement particles is established in rolling and the stress and strain contours and curves of silicon grains and aluminum body are researched by the finite element procedures. The problem that the stress of reinforcement particles in rolling process can not be analyzed quantitatively by ordinary experiment is also solved. The results show that the strain of the aluminum matrix near the grains is greater than other parts of the Al matrix and far greater than the strain of silicon grain, which indicates the metal accumulation phenomenon appeared on the grains. The stress value of silicon grain is greater than aluminum matrix, which indicates stress concentration phenomenon appeared because of the accumulation of the metal near the grains. After the simulation, the feasibility of numerical simulation method and the accuracy of simulation results can be validated indirectly by the method of observing the feature of tensile fracture with the electron microscopy and analyze the energy spectrum.
Key wordsaluminum-silicon alloy    reinforcement particle    metal accumulation    stress concentration    numerical simulation
收稿日期: 2012-01-10      出版日期: 2013-03-20
中图分类号: 

TB331

 
基金资助:

黑龙江省自然基金(E201028);哈尔滨市科技创新人才研究专项基金(2011RFJGG010);哈尔滨理工大学2011年研究生创新科研基金(HLGYCX2011-013)

作者简介: 赵彦玲(1963-),女,教授,博士,硕士生导师,研究方向包括铝合金轧制缺陷数值模拟研究,机械CAD/CAE/CAM技术,逆向工程技术,超硬磨料磨具开发,航空模具零件知识库、数据库技术等,联系地址:黑龙江省哈尔滨市南岗区学府路52号哈尔滨理工大学机械动力工程学院(150080),E-mail:zhaoyanling@sina.com
引用本文:   
赵彦玲, 周凯, 车万博, 铉佳平, 车春雨. 铝硅合金轧制中增强体颗粒应力集中数值模拟[J]. 材料工程, 2013, 0(3): 51-54,60.
ZHAO Yan-ling, ZHOU Kai, CHE Wan-bo, XUAN Jia-ping, CHE Chun-yu. Numerical Simulation of Reinforced Particle Stress Concentration in Al-Si Alloy Rolling. Journal of Materials Engineering, 2013, 0(3): 51-54,60.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.03.010      或      http://jme.biam.ac.cn/CN/Y2013/V0/I3/51
[1] 许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制[D].长春:吉林大学,2007.11-12.

[2] 赵冠中,毛大恒,黎正华,等.汽车热交换器用三层复合铝箔[J].现代制造工程,2009,(11):54-56.ZHAO G J,MAO D H,LI Z H,et al. Automobile transfer 3-layer composite aluminum foil[J]. Modern Manufacturing Engineering,2009,(11):54-56.

[3] TORRALBA J M,DA COSTA C E,VELASCO F.P/M aluminum matrix composites: an overview[J]. Journal of Materials Processing Technology,2003,133(1-2):203-206.

[4] 白桦,孟宪举,陈连生,等.基于DEFORM下棒材热轧过程的数值模拟及缺陷[J].河北理工大学学报,2008, 30 (2):43-44.BAI H,MENG X J,CHEN L S,et al. Numerical simulation and failure analysis of rod hot rolling process using DEFORM[J].Journal of Hebei Polytechnic University, 2008,30(2):43-44.

[5] 白桦.棒材热轧过程的数值模拟及缺陷预测[D].唐山:河北理工大学,2008.23-24.

[6] 晏义伍.颗粒尺寸对SiCp/Al复合材料性能的影响规律及其数值模拟[D].哈尔滨:哈尔滨工业大学,2007.18-19.

[7] YAN Y W, GENG L, LI A B. Effects of particle size on residual stresses of metal matrix composites[J]. Transactions of Nonferrous Metals Society of China,2006:1-2.

[8] KORTHAUER M,ATAYA S,MAGD E.Effects of deformed volume, volume fraction and particle size on the deformation behaviour of W/Cu composites[J]. Theoretical and Applied Fracture Mechanics, 2006,46(1):38-45.

[9] LEWANDOWSKI J J, LIU S,LIU C. Observation on the effects of particulate size and superposed pressure on deformation of metal matrix composites[J]. Scripta Metallurgica et Materialia,1991, 25 (1):21-26.

[10] ARPON R,MOLINA M,NARCISO J.Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions[J]. Acta Materialia,2003, 54 (11):3145-3156.

[11] HU M S.Some effects of particle size on the flow behavior of Al-SiCp composites[J]. Scripta Metallurgica et Materialia,1991, 25 (3):695-700.

[12] LEE S M, SHINVPURIR. Investigation of two square-to-round multipass rolling sequences by the slab-finite element method[J]. Int J Math Tools Manufact,1992,32 (3):315-320.

[13] SHINVPURI R, SHIN W. A methodology for rolling optimization for multipass rolling shape[J]. Int J Math Tools Manufact,1992, 32 (5):671-679.

[14] 陈仙凤.基于DEROM-3D平台1Cr13板材热轧数值模拟研究[D].杭州:浙江工业大学,2008.73-74.

[15] 吕日松,董万鹏,陈军.金属塑性成形缺陷的数值模拟预测研究[J].模具技术,2003,(3):3-4. LV R S,DONG W P,CHEN J. The research on numerical simulation in the prediction of metal plastic forming defects [J]. Mould Technology,2003,(3):3-4.

[16] 陈彦博,赵红亮,翁康荣.有色金属轧制技术[M].北京:化学工业出版社,2007.146-149.

[17] 李传民,王向丽,闫华军,等.金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.89-90.

[18] 邓少奎.2E12高强耐疲劳铝合金轧制工艺和疲劳性能的研究[D].秦皇岛:燕山大学,2007.18-21.

[19] 冯端.金属物理学第二卷相变[M].北京:科学出版社,1990.150-152.

[20] 游志勇,赵浩峰,李建春,等.Zn-Al-Si合金的断裂特性研究[J].铸造技术, 2009, 30 (7):892-895. YOU Z Y,ZHAO H F,LI J C,et al. Research on the fracture performance of Zn-Al-Si alloys[J]. Casting Technique,2009, 30(7):892-895.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[3] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[6] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[7] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[8] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[9] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[10] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[11] 刘彬, 石常亮, 缪文炳, 董世运. 缺陷/应力交互对碳钢Lcr波声弹性系数的影响[J]. 材料工程, 2017, 45(7): 97-102.
[12] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[13] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[14] 王跃, 穆志韬, 李旭东, 郝建滨. 单向拉伸条件下补片参数对复合材料胶接修复结构的影响[J]. 材料工程, 2017, 45(4): 108-112.
[15] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn