Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (3): 77-82    DOI: 10.3969/j.issn.1001-4381.2013.03.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
应变速率对X80管线钢应力腐蚀的影响
程远1,2, 俞宏英2, 王莹1,2, 孟旭1,2, 孙冬柏1,2
1. 北京科技大学 国家材料服役安全科学中心,北京 100083;
2. 北京科技大学 腐蚀与防护中心 表面科学与技术研究所,北京 100083
Effect of Strain Rate on Stress Corrosion Cracking of X80 Pipeline Steel
CHENG Yuan1,2, YU Hong-ying2, WANG Ying1,2, MENG Xu1,2, SUN Dong-bai1,2
1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China;
2. Laboratory for Corrosion-Erosion and Surface Technology, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(5007 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用慢应变速率拉伸试验研究了应变速率对X80管线钢在土壤模拟溶液中的应力腐蚀的影响。采用的模拟溶液以我国西北部碱性土壤的化学成分为基础,在不同应变速率条件下进行试验。样品断裂后利用扫描电镜对断口形貌以及断口侧面二次裂纹进行观察。研究结果表明:X80钢在1.0×10-6s-1应变速率下表现出最高的应力腐蚀敏感性。低于该应变速率下,应力腐蚀敏感性略有降低;而高于该应变速率下,应力腐蚀敏感性明显减小。不同应变速率下应力腐蚀敏感性的差异主要是由应力腐蚀过程中腐蚀和力学作用的影响程度不同造成。应变速率低于1.0×10-6s-1时,腐蚀作用影响更大,较长的腐蚀时间造成裂纹被腐蚀,裂纹扩展受到影响,因此应力腐蚀敏感性略有降低。当应变速率高于1.0×10-6s-1时,力学作用主导整个过程,形成的裂纹没有受到足够腐蚀的情况下,在力学作用下发生快速机械扩展、断裂,因此产生了明显降低的应力腐蚀行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程远
俞宏英
王莹
孟旭
孙冬柏
关键词 X80管线钢应力腐蚀慢应变速率拉伸应变速率    
Abstract:Stress corrosion cracking susceptibility of X80 pipeline steel was investigated in a simulated soil solution using slow strain rate tensile (SSRT) tests. The simulated soil solution was based on the chemical compositions of alkaline Gansu soil in northwest of China. The tests were conducted at different strain rates. The fracture surfaces and secondary cracks were observed using scanning electron microscopy (SEM). The results showed that strain rates had an important role on SCC of X80 steel in simulated soil solutions. Corrosion and mechanical factors have different influences during the SCC processes at different strain rates, which results in the variety of SCC. There was the highest SCC susceptibility at the strain rate of 1.0×10-6s-1. Combined effect of corrosion and mechanics leads to high SCC susceptibility. When the strain rates were lower than 1.0×10-6s-1, enough long corrosion time results in the corrosion of crack in this strain rate range. The crack propagation is restrained. Thus, slight decrease of SCC susceptibilities occurs. As the strain rates were higher than 1.0×10-6s-1, SCC susceptibilities were low obviously. In this high strain rates range, the mechanical factors have more effect on SCC than corrosion factors, which mainly lead to mechanical fracture of specimens.
Key wordsX80 pipeline steel    stress corrosion    slow strain rate tensile    strain rate
收稿日期: 2012-03-06      出版日期: 2013-03-20
中图分类号: 

TG172

 
基金资助:

中国石油天然气股份有限公司科学研究与技术开发项目(2009110031001035)

作者简介: 程远(1983-),男,博士研究生,主要研究方向为材料的腐蚀与防护、应力腐蚀,联系地址:北京科技大学389信箱国家材料服役安全科学中心(100083),E-mail:chengyuan621@sina.com
引用本文:   
程远, 俞宏英, 王莹, 孟旭, 孙冬柏. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程, 2013, 0(3): 77-82.
CHENG Yuan, YU Hong-ying, WANG Ying, MENG Xu, SUN Dong-bai. Effect of Strain Rate on Stress Corrosion Cracking of X80 Pipeline Steel. Journal of Materials Engineering, 2013, 0(3): 77-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.03.015      或      http://jme.biam.ac.cn/CN/Y2013/V0/I3/77
[1] 黄志潜.国外输气管道技术的发展现状和几点建议[J].焊管,2000,23(3):1-20.HUANG Z Q. The development status of gas transmitting pipeline steel and steel pipe abroad and our suggestions[J].Welded Pipe and Tube,2000,23(3):1-20.
[2] 黄志潜.X80级管线钢在高压大流量输气管道上的应用与发展前景[J].焊管,2005,28(3):1-10.HUANG Z Q. The application and development prospect of grade X80 pipeline steel in high pressure large volume gas transmission pipeline [J].Welded Pipe and Tube,2005,28(3):1-10.
[3] 庄传晶,冯耀荣,霍春勇,等.国内X80级管线钢的发展及今后的研究方向[J].焊管,2005,28(2):10-14. ZHUANG C J, FENG Y R, HUO C Y, et al. The development and its future research direction of grade X80 pipeline steel in China [J].Welded Pipe and Tube,2005,28(2):10-14.
[4] FANG B Y,ATRENS A,WANG J Q. Review of stress corrosion cracking of pipeline steels in "low" and "high" pH solutions[J].Journal of Material Science,2003,38(1):127-132.
[5] MANFREDI C, OTEGUI J L. Failures by SCC in buried pipelines [J].Engineering Failure Analysis, 2002, 9(5):495-509.
[6] KENTISH P J. Gas pipeline failures: Australian experience [J]. Corrosion, 1985,20(3):139-146.
[7] CHENG Y F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines [J].Electrochimica Acta, 2007, 52(7):2661-2667.
[8] GU B,LUO J L,MAO X. Transgranular stress corrosion cracking of X-80 and X-52 pipeline steels in dilute aqueous solution with near-neutral pH [J].Corrosion,1999, 55(3):312-318.
[9] 方丙炎,王俭秋,朱自勇,等.埋地管道在近中性pH和高pH环境中的应力腐蚀开裂[J].金属学报,2001,37(5):453-458.FANG B Y, WANG J Q, ZHU Z Y,et al. The stress corrosion cracking of buried pipelines in near-neutral-pH and high-pH solutions [J]. Acta Metallurgica Sinica,2001,37(5): 453-458.
[10] ZHOU J L, LI X G,DU C W,et al. Anodic electrochemical behavior of X80 pipeline steel in NaHCO3 solution [J].Acta Metallurgica Sinica,2010,46(2):251-256.
[11] GU B, LUO J L, MAO X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution [J]. Corrosion, 1999,55(1):96-106.
[12] WANG J Q, ATRENS A. SCC initiation for X65 pipeline steel in the high pH carbonate/bicarbonate solution [J].Corrosion Science, 2003, 45(10):2199-2217.
[13] ASAHI H, KUSHIDA T, KIMURA M, et al. Role of microstructures on stress corrosion cracking of pipeline steels in carbonate-bicarbonate solution [J].Corrosion, 1999,55(7): 644-652.
[14] LIANG P, DU C W,LI X G, et al. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution[J]. International Journal of Minerals, Metallurgy and Materials,2009,16(4):407-413.
[15] ZHANG L,LI X G,DU C W, et al. Effect of applied potentials on stress corrosion cracking of X70 pipeline steel in alkali solution[J].Materials and Design,2009,30(6): 2259-2263.
[16] LIU Z Y,ZHAI G L,LI X G, et al. Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J].Journal of University of Science and Technology Beijing, Mineral,Metallurgy, Material,2008,15(6):707-713.
[17] LIANG P, LI X G, DU C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J].Materials and Design,2009,30(5):1712-1717.
[18] 张亮,李晓刚,杜翠薇,等.应变速率对管线钢在碱性溶液中应力腐蚀行为的影响[J].钢铁研究学报,2009,21(10): 55-59. ZHANG L,LI X G,DU C W, et al. Effect of strain rate on stress corrosion cracking behavior of pipeline steel in simulated alkali solution[J].Journal of Iron and Steel Research,2009,21(10): 55-59.
[19] 孙齐磊,曹备,吴荫顺.应变速率对X70管线钢应力腐蚀行为的影响[J].钢铁研究学报,2009, 21(9): 51-55. SUN Q L,CAO B,WU Y S. Effect of strain rate on stress corrosion cracking behavior of steel API-X70[J].Journal of Iron and Steel Research,2009, 21(9): 51-55.
[1] 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
[2] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[3] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
[4] 李文婷, 王浩伟, 余军, 董泽华, 郭兴蓬. 铈离子对高强铝合金应力腐蚀开裂的缓蚀作用[J]. 材料工程, 2017, 45(5): 20-30.
[5] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[6] 祁星, 宋仁国, 祁文娟, 金骥戎, 王超, 李海. pH值对7050铝合金膜致应力和应力腐蚀敏感性的影响[J]. 材料工程, 2016, 44(5): 86-92.
[7] 章淑芳, 王晓敏, 陈辉, 廖潇垚. 7003铝合金动车柜体的应力腐蚀开裂[J]. 材料工程, 2015, 43(7): 105-112.
[8] 郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
[9] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[10] 周峰, 吴开明. 超快冷工艺对高铌X80管线钢抗腐蚀性能的影响[J]. 材料工程, 2015, 43(2): 67-72.
[11] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[12] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[13] 程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
[14] 刘瑛, 张品芳, 陈兰君, 张合, 张新明, 耿占吉. 预析出对2519A铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, 0(6): 11-17.
[15] 辛星, 张新明, 刘胜胆, 宋丰轩, 陈彬. 回归再时效中预时效温度对7050铝合金应力腐蚀性能的影响[J]. 材料工程, 2014, 0(5): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn