Research Status and Development of Metallurgical Method for Solar Grade Silicon (SOG-Si)
TAN Yi1,2, GUO Xiao-liang1,2, SHI Shuang1,2, DONG Wei1,2, JIANG Da-chuan1,2, LI Jia-yan1,2
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
Abstract:Purification polycrystalline silicon by metallurgical method is the only way for our country to escape the dependency of silicon feedstock, and to develop low-cast and environmental friendly process for SOG-Si. Since its emergence, metallurgical method has undergone three research surges. The third development is under the leading and promotion of our country's research and industry workers, obtaining considerable useful scientific theory and practical experience. In this paper, from the definition of metallurgical method, the basic theories of metallurgical method, including saturated vapor pressure principle, segregation mechanism and differences in mechanism of oxidation, are analyzed in detail; moreover, technologies and their progress derived from the mechanisms are presented. At the end, the trend of metallurgical method is forecasted.
谭毅, 郭校亮, 石爽, 董伟, 姜大川, 李佳艳. 冶金法制备太阳能级多晶硅研究现状及发展趋势[J]. 材料工程, 2013, 0(3): 90-96.
TAN Yi, GUO Xiao-liang, SHI Shuang, DONG Wei, JIANG Da-chuan, LI Jia-yan. Research Status and Development of Metallurgical Method for Solar Grade Silicon (SOG-Si). Journal of Materials Engineering, 2013, 0(3): 90-96.
[1] SCHEUER E. The segregation problem[J]. Z Metallkd, 1931, 23: 237-241. [2] TRUMBORE F A. Solid Solubilities of impurity elements in germanium and silicon[J]. Bell Syst Tech J, 1960, 39(1): 205-233. [3] NOZAKI T, YATSURUGI Y, AKIYAMA N. Concentration and behavior of carbon in semiconductor silicon[J]. J Electrochem Soc, 1970, 117(12): 1566-1568. [4] YATSURUGI Y, AKIYAMA N, ENDO Y, et al. Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon[J]. J Electrochem Soc, 1973, 120(7): 975-979. [5] LIN W, HILL D W. Oxygen segregation in Czochralski silicon growth[J]. J Appl Phys, 1983, 54(2): 1082-1094. [6] HOPKINS R H, ROHATGI A. Impurity effects in silicon for high efficiency solar cells[J]. Journal of Crystal Growth, 1986, 75(1): 67-79. [7] MIKI T, MORITA K, SANO N. Thermodynamics of phosphorus in molten silicon[J]. Metallurgical and Materials Transactions B, 1996, 27(6): 937-941. [8] MIKI T, MORITA K, SANO N. Thermodynamic properties of Si-Al, -Ca, -Mg binary and Si-Ca-Al, -Ti, -Fe ternary alloys[J]. Materials Transactions, 1999, 40(10): 1108-1116. [9] MIKI T, MORITA K, SANO N. Thermodynamic properties of titanium and iron in molten Silicon[J]. Metallurgical and Materials Transactions B, 1997, 28(5): 861-867. [10] MORITA K, MIKI T. Thermodynamics of solar-grade-silicon refining[J]. Intermetallics, 2003, 11(11-12): 1111-1117. [11] YUGE N, ABE M, HANAZAWA K, et al. Purification of metallurgical grade silicon up to solar grade[J]. Prog Photovolt, 2001, 9(3): 203-209. [12] HANAZAWA K, YUGE N, KATO Y. Evaporation of phosphorus in molten silicon by an electron beam irradiation method[J]. Mater Trans, 2004, 45(3): 844-849. [13] 宋大有. 世界硅材料工业发展概况[J]. 上海有色金属, 1997, 18(2): 74-86. [14] 何凯. 硅石制备晶体硅[J]. 中国非金属矿工业导刊, 2005, 51(6): 48-50. [15] 马文会. 冶金法制备太阳能级多品硅技术发展动态[J]. 应用科技, 2009, 17(2): 16-18. [16] 何允平:太阳能级多品硅的制取[J]. 应用科技, 2009, 17(2): 19-21. [17] 郑凇生, 陈朝, 罗学涛. 多晶硅冶金法除磷的研究进展[J]. 材料导报, 2009, 23 (10): 11-14. [18] NAKAJIMA K, USAMI N. Crystal Growth of Si for Solar Cells[M]. Berlin: Springer Verlag, 2009. [19] 徐云飞. 冶金法制备太阳能级多晶硅工艺研究. 大连: 大连理工大学, 2007. [20] 杨德仁. 太阳电池材料[M]. 北京:化学工业出版社, 2006. [21] MAIJER D M, IKEDA T, COCKCROFT S L, et al. Mathematical modeling of residual stress formation in electron beam remelting and refining of scrap silicon for the production of solar-grade silicon[J]. Materials Science and Engineering A, 2005, 390(1-2): 188-201. [22] PIRES J C S, OTUBO J, BRAGA A F B, et al. The purification of metallurgical grade silicon by electron beam melting[J]. Journal of Materials Processing Technology, 2005, 169(1):16-20 [23] DONG W, WANG Q, PENG X, et al. Removal of phosphorus in metallurgical grade silicon using electron beam melting[J]. Materials Science Forum, 2011, 675-677: 45-48. [24] MIKI T, MORITA K, SANO N. Thermodynamic properties of aluminum, magnesium, and calcium in molten silicon[J]. Metallurgical and Materials Transactions B, 1998, 29(5): 1043-1049. [25] MARTORANO M A, NETO J B F, OLIVEIRA T S, et al. Refining of metallurgical silicon by directional solidification[J]. Materials Science and Engineering B, 2011, 176(3): 217-226. [26] GALGALI R K,GUMASTE J L,SYAMAPRASAD U,et al.Studies on slag refining and directional solidification in the purification of silicon[J].Solar Energy Materials,1987,16(4):297-307. [27] YOSHIKAWA T, MORITA K. Removal of B from Si by solidification refining with Si-Al melts[J]. Metall Mater Trans B, 2005, 36(6): 731-736. [28] WU J J, MA W H, YANG B. Boron removal from metallurgical grade silicon by oxidizing refining[J]. Trans. Nonferrous Met. Soc. China, 2009, 19(2):463-467. [29] YASUKA K, NOHIRA T, HAGIWARA R, et al. Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon[J]. Electrochim Acta, 2007, 53(1):106-110. [30] 吕东,马文会,伍继君,等. 冶金法制备太阳能级多晶硅新工艺原理及研究进展[J]. 材料导报, 2009, 23(3): 30-33. [31] ZHENG S S, CHEN W H, CAI J, et al. Mass transfer of phosphorus in silicon melts under vacuum induction refining[J]. Metallurgical and Materials Transactions B, 2010, 41(6):1268-1273. [32] ZHENG S S, SAFARIAN J, SEOK S, et al. Elimination of phosphorus vaporizing from molten silicon at finite reduced pressure[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 697-702. [33] 张聪. 熔融态冶金级硅中杂质的挥发去除行为研究. 大连: 大连理工大学, 2010. [34] MA W H, WEI K X, YANG B, et al. Vacuum distillation refining of metallurgical grade silicon (Ⅱ)—kinetics on removal of phosphorus from metallurgical grade silicon[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(S1): 1026-1029. [35] WEI K X, MA W H, YANG B, et al. Study on volatilization rate of silicon in multicrystalline silicon preparation from metallurgical grade silicon[J]. Vacuum, 2011, 85(7): 749-754. [36] 马立蒲, 刘为超. 电子束熔炼技术及其应用[J]. 有色金属加工, 2008, 37(6): 28-31. [37] 韩明臣, 周义刚, 赵铁夫, 等. 电子束冷床熔炼参数对熔池表面温度的影响[J]. 稀有金属,2006, 30(S2): 55-58. [38] 戴永年,杨斌. 有色金属真空冶金[M].2版.北京: 冶金工业出版社, 2009. [39] CASENAVE D, GAUTHIER R, PINARD P. A study of the purification process during the elaboration by electron bombardment of polysilicon ribbons designed for photovoltaic conversion[J]. Sol Energy Mater, 1981, 5(4): 417-423. [40] 姜大川, 谭毅, 董伟, 等. 电子束束流密度对冶金硅中杂质磷的影响[J]. 材料工程, 2010,(3): 18-21. [41] 姜大川, 董伟, 谭毅, 等. 电子束熔炼多晶硅对杂质铝去除机制研究[J]. 材料工程, 2010,(8): 8-11. [42] 彭旭, 董伟, 谭毅, 等. 电子束熔炼冶金级硅中杂质钙的蒸发行为[J]. 功能材料, 2010, 41(S1): 117-120. [43] IKEDA T, MAEDA M. Purification of metallurgical silicon for solar-grade silicon by electron beam button melting[J]. ISIJ International, 1992, 32(5): 635-642. [44] PIRES J C S, BRAGA A F B, MEI P R. Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace[J]. Solar Energy Materials & Solar Cells, 2003, 79(3): 347-355. [45] DONG W, PENG X, JIANG D C, et al. Calcium evaporation from metallurgical grade silicon by an electron beam melting[J]. Materials Science Forum, 2011, 675-677: 41-44. [46] 董伟, 王强, 彭旭, 等. 电子束熔炼冶金级硅除铝研究[J]. 材料研究学报, 2010, 24(6): 592-596. [47] 王强, 董伟, 谭毅, 等. 电子束熔炼去除冶金级硅中磷、铝、钙的研究[J]. 功能材料, 2010, 41 (S1): 144-147. [48] WANG Q, DONG W, TAN Y, et al. Impurities evaporation from metallurgical-grade silicon in electron beam melting process [J]. Rare Metals, 2011, 30(3): 274-277. [49] 王强. 电子束冶炼提纯冶金级硅工艺研究. 大连: 大连理工大学, 2010. [50] PENG X, DONG W, TAN Y, et al. Removal of aluminum from metallurgical grade silicon using electron beam melting[J]. 2012, 86(4): 1-5. [51] JIANG D C, TAN Y, SHI S, et al. Evaporated metal aluminium and calcium removal from directionally solidified silicon for solar cell by electron beam candle melting[J]. Vaccum, 2012, 86(10): 1417-1422. [52] JJIANG D C, TAN Y, SHI S, et al. Research on new method of electron beam candle melting used for removal of P from molten Si[J]. Materials Research Inovations, 2011, 15(6): 406-409. [53] JIANG D C, TAN Y, SHI S, et al. Removal of phosphorus in molten silicon by electron beam candle melting[J]. Materials Letters, 2012, 78(S1): 4-7. [54] 姜大川. 电子束熔炼提纯多晶硅的研究. 大连: 大连理工大学, 2012. [55] 胡庚祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2006. [56] 傅恒志, 郭景杰, 刘林, 等. 先进材料定向凝固[M]. 北京: 科学出版社, 2008. [57] YUGE N, SAKAGUCHI Y, TERASHIMA H. Purification of silicon by directional solidification[J]. Japan Inst Metals, 1997, 61(10): 1094-1100. [58] 张慧星. 工业硅定向凝固提纯研究. 大连: 大连理工大学, 2009. [59] 孙世海. 定向凝固提纯多晶硅研究. 大连: 大连理工大学, 2010. [60] SUN S H, TAN Y, DONG W, et al. Resistivity distribution of multicrystalline silicon ingot grown by directional solidification[J]. Journal of Materials Engineering and Performance, 2012, 21(6): 854-858. [61] WU B, STODDARD N, MA R H, et al. Bulk multicrystalline silicon growth for photovoltaic (PV) application[J]. Journal of Crystal Growth, 2008, 310(7-9): 2178-2184. [62] FRANKE D, RETTELBACH T, HABLER C, et al. Silicon ingot casting: process development by numerical simulations[J]. Solar Energy Materials and Solar Cells, 2002, 72: 83-92. [63] SAKATA T, MIKI T, MORITA K. Removal of iron and titanium in poly-crystalline silicon by acid leaching[J]. Japan Inst Metals, 2002, 66(5): 459. [64] 汤培平,徐敏,王宝璐,等. 冶金法制备太阳能硅过程的湿法提纯研究[J]. 精细化工, 2009, 26(8): 733-737. [65] MARGANIDO F, MARTINS J P, FIGUEIREDO M O, et al. Kinetics of acid leaching refining of an industrial Fe-Si alloy[J]. Hydrometallurgy, 1993, 34(1): 1-11. [66] MARGANIDO F, BASTOS M H, FIGUEIREDO M O, et al. The structural effect on the kinetics of acid leaching refining of Fe-Si alloys[J]. Materials Chemistry and Physics, 1994, 38(4): 342-347. [67] DAWLESS R K, TROUP R L, MEIER D L, et al. Production of extreme-purity aluminum and silicon by fractional crystallization processing[J]. Journal of Crystal Growth, 1988, 89(1): 68-74. [68] YOSHIKAWA T, MORITA K. Refining of silicon during its solidification from a Si-Al melt[J]. Journal of Crystal Growth, 2009, 311(3): 776-779. [69] YOSHIKAWA T, MORITA K. Removal of phosphorus by the solidification refining with Si-Al melts[J]. Science and Technology of Advanced Materials, 2003, 4(6): 531-537. [70] MITRASINOVIC A, UTIGARD T. Refining silicon for solar cell application by copper alloying[J]. Silicon, 2009,1(4): 239-248. [71] NISHI Y, KANG Y, MORITA K. Control of Si crystal growth during solidification of Si-Al melt[J]. Materials Transactions, 2010, 51(7): 1227-1230. [72] GU X, YU X G, YANG D R. Low-cost solar grade silicon purification process with Al-Si system using a powder metallurgy technique[J]. Separation and Purification Technology, 2011, 77(1): 33-39. [73] JOURDAN J, DUBOIS S, CABAL R, et al. Electrical properties of n-type multicrystalline silicon for photovoltaic application-Impact of high temperature boron diffusion[J]. Materials Science and Engineering B, 2009, 159-160: 305-308. [74] SUZUKI K, SAKAGUCHI K, NAKAGIRI T, et al. Gaseous removal of phosphorus and boron from molten silicon [J]. J Jpn Inst Met, 1990, 54(2): 161-167. [75] SUZUKI K, KUMAGAI T, SANO N. Removal of boron from metallurgical grade silicon by applying the plasma treatment[J]. ISIJ International, 1992, 32(5): 630-634. [76] JOHNSTON M D, BARATI M. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications[J]. Solar Energy Materials & Solar Cells, 2010, 94(12): 2085-2090. [77] ALEMANY C, TRASSY C, PATEYRON B, et al. Refining of metallurgical-grade silicon by inductive plasma[J]. Solar Energy materials & Solar Cells,2002, 72(1-4):41-48. [78] LEE B P, LEE H M, PARK D H, et al. Refining of MG-Si by hybrid melting using steam plasma and EMC[J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 56-58. [79] NAKAJIMA K, USAMI N. Crystal Growth of Si for Silicon Cell [M]. Berlin: Springer, 2009. [80] CAI J, LI J T, CHEN W H, et al. Boron removal from metallurgical silicon CaO-SiO2-CaF2 slags[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(6): 1402-1406.