Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 17-22    DOI: 10.3969/j.issn.1001-4381.2013.04.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究
孙莉莉, 钟艳莉
北京航空材料研究院,北京 100095
Crystallization and Dielectric Properties of Carbon Nanofiber/High-density Polyethylene Composites
SUN Li-li, ZHONG Yan-li
Beijing Institute of Aeronautical Materials,Beijing 100095,China
全文: PDF(3086 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用新型纳米材料——碳纳米纤维(CNF)对高密度聚乙烯(HDPE)进行改性,采用转矩流变仪熔融共混和模压两步法制备1%~20%(质量分数,下同)CNF/HDPE复合材料。研究了CNF的分散特性及其对HDPE材料结晶行为和介电性能的影响。结果表明:CNF可良好分散于HDPE基体中,同时CNF会导致HDPE的结晶度和晶粒尺寸发生变化,并促进HDPE沿(110)晶面取向生长;另一方面,复合材料的介电常数随CNF含量增加而大幅度提高,当CNF含量为20%时,复合材料在103Hz下的介电常数达到580,比HDPE提高~150倍;同时由于CNF的存在,与介电常数不随频率变化的HDPE不同,复合材料的介电常数表现出强烈频率依赖性。CNF对复合材料的AC导电率也有显著影响,当CNF含量达到10%以上时,AC导电率表现出明显的直流特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙莉莉
钟艳莉
关键词 碳纳米纤维高密度聚乙烯结晶行为介电性能    
Abstract:An attractive type of nanofiller-carbon nanofiber (CNF) was used to modify high-density polyethylene (HDPE), in which the nanocomposites with 1%-20% CNFs were prepared via a two-step process including melt mixing and hot press. The crystallization and dielectric properties of CNF/HDPE composites, as well as the dispersion of CNFs, were investigated . The results showed that CNFs were well dispersed in HDPE. It was also demonstrated that the crystallinity and crystal size of HDPE were influenced by the introduction of CNFs. The (110) planes of HDPE was also enhanced as proved with the increased intensity of the characteristic peak. In addition, the dielectric constant of nanocomposites was dramatically improved with higher CNF contents. The highest dielectric constant, 580 at 103Hz, was achieved with 20% CNFs, which was about 150 times higher than that of pure HDPE. Simultaneously, the dielectric constant of nanocomposites showed high dependence on the frequency due to the existence of CNFs, compared with the independent dielectric constant of pure HDPE. The AC conductivity of nanocomposites was also greatly affected by CNF,the characteristic of direct conductivity was obviously exhibited with the CNF concentration higher than 10%.
Key wordsCNF    HDPE    crystallization    dielectric property
收稿日期: 2012-02-11      出版日期: 2013-04-20
1:  TQ325.12  
作者简介: 孙莉莉(1983—),女,博士,工程师,研究方向为高分子材料及复合材料,联系地址:北京航空材料研究院光学透明结构与功能材料技术研究室(100095),E-mail:lilisun0822@gmail.com
引用本文:   
孙莉莉, 钟艳莉. 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程, 2013, 0(4): 17-22.
SUN Li-li, ZHONG Yan-li. Crystallization and Dielectric Properties of Carbon Nanofiber/High-density Polyethylene Composites. Journal of Materials Engineering, 2013, 0(4): 17-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.004      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/17
[1] AL-SALEH M H, SUNDARARAJ U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2-22.
[2] SHEN Y, LIN Y H, NAN C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles[J]. Adv Funct Mater,2007,17(14):2405-2410.
[3] YANG S, BENITEZ R, FUENTES A, et al. Dielectric analysis of VGCNF reinforced polyethylene composites[J]. Composites Science and Technology,2007,67(6):1159-1166.
[4] 申玉芳, 邹正光, 李合, 等. 高介电聚合物/无机复合材料研究进展[J]. 材料导报,2009,23(2):29-34.SHEN Y F, ZOU Z G, LI H, et al. Research advances in high-dielectric-constant polymer/inorganic composites[J]. Materials Review,2009,23(2):29-34.
[5] 邢光建, 杨志明, 杨剑, 等. 高介电性能的陶瓷-聚合物复合材料的现状研究[J]. 高分子材料科学与工程,2005,21(3):54-58. XING G J, YANG Z M, YANG J, et al. Research situation of ceramic-polymer composite with high dielectric properties[J]. Polymer Materials Science and Engineering,2005,21(3):54-58.
[6] REFFAEE A S A, NASHAR D E E, ABD-EL-MESSIEH S L, et al. Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold[J]. Materials and Design,2009,30(9):3760-3769.
[7] HUANG X Y, JIANG P K, KIM C, et al. Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics[J]. Composites Science and Technology,2008,68(9):2134-2140.
[8] NIKKHAH S J, RAMAZANI A S A, BANIASADI H, et al. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler-Natta catalyst[J]. Materials and Design,2009,30(7):2309-2315.
[9] JEON K, LUMATA L, TOKUMOTO T, et al. Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes-high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM[J]. Polymer,2007,48(16):4751-4764.
[10] YUAN Q, GUDAVALLI R, MISRA R D K. Nanoparticle effects on the crystallization of polyethylene at elevated pressures[J].Materials Science and Engineering:A,2008,492(1-2):434-442.
[11] TIAN J H, YU W, ZHOU C X. Crystallization behaviors of linear and long chain branched polypropylene[J]. Inc J Appl Polym Sci,2007,104(6):3592-3600.
[12] 解云川, 范晓东, 孔杰, 等. 聚乙烯/蒙脱土复合材料的结晶行为[J]. 高分子材料科学与工程,2005,21(3):117-120. XIE Y C, FAN X D, KONG J, et al. Study on the crystallization behaviors of polyethylene/MMT hybrid system[J]. Polymer Materials Science and Engineering,2005,21(3):117-120.
[13] LOZANO K, BARRERA E A. Nanofiber-reinforced thermoplastic composites. I. thermoanalytical and mechanical analysis[J]. J Appl Polym Sci,2001,79(1):125-133.
[14] 倪卓, 习雯影, 杨松峰, 等. DMDBX对聚乙烯结晶结构及性能的影响[J]. 深圳大学学报:理工版,2009,26(1):65-71. NI Z, XI W Y, YANG S F, et al. Effect of DMDBX on crystal structures and crystallization behaviors of polyethylene[J]. Journal of Shenzhen University(Science & Engineering),2009,26(1):65-71.
[15] SUI G, ZHONG W H, REN X, et al. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers[J]. Materials Chemistry and Physics,2009,115(1):404-412.
[16] 唐龙祥, 严满清, 刘春华, 等. 紫外光交联聚乙烯的结晶行为[J]. 应用化学,2009,26(9):1019-1022. TANG L X, YAN M Q, LIU C H, et al. Studies on crystallization behavior of UV-photocrosslinked high-density polyethylene[J].Chinese Journal of Applied Chemistry,2009,26(9):1019-1022.
[17] MCNALLY T, POTSCHKE P, HALLEY P, et al. Polyethylene multiwalled carbon nanotube composites[J]. Polymer,2005,46(19):8222-8232.
[18] ZHOU O, FLEMING R M, MURPHY D W, et al. Defects in carbon nanostructures[J]. Science,1994,263(5154):1744-1747.
[19] SUI G, JANA S, ZHONG W H, et al. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites[J]. Acta Materialia,2008,56(10):2381-2388.
[20] WANG W, SHEN D, BAO M, et al. Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer[J]. Macromolecules,2005,38(6):2247-2252.
[21] LI J Y. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction[J]. Phys Rev Lett,2003,90(21):217601.
[22] AHMAD K, PAN W, SHI S L. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites[J]. Applied Physics Letters,2006,89(13):133122.
[23] HO C H, LIU C D, HSIEH C H, et al. High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization[J]. Synthetic Metals,2008,158(15):630-637.
[24] RAJA V, SHARMA A K, NARASIMHA V V R. Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films[J]. Mater Lett,2004,58(26):3242-3247.
[25] WILKINSON D, LANGER J S, SEN P N. Enhancement of the dielectric constant near a percolation threshold[J]. Phys Rev B,1983,28(2):1081-1087.
[26] SONG Y, NOH T W, LEE S I, et al. Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold[J]. Phys Rev B,1986,33(2):904-908.
[27] CAO W Q, LU M M, WEN B, et al. MWCNTs/SiO2 composite system: carrier transmission, twin-percolation and dielectric properties[J]. Chin Phys Lett,2011,28(10):107701.
[1] 宋洪松, 赵天宇, 杨程. 表面处理对CCTO/PVDF复合材料介电性能的影响[J]. 材料工程, 2014, 0(8): 27-31.
[2] 戴斌, 朱海奎, 周洪庆, 吴路燕, 岳振星. 含碱金属离子的CaO-B2O3-SiO2系玻璃陶瓷性能研究[J]. 材料工程, 2012, 0(8): 65-68,72.
[3] 肇研, 董昊, 胡建平, 李翔, 刘建华. 湿热循环对Nomex蜂窝/环氧树脂夹层复合材料性能的影响[J]. 材料工程, 2012, 0(6): 1-6.
[4] 孙雨薇, 王树彬, 张健. CBS涂层对多孔氮化硅高温高频介电性能的影响[J]. 材料工程, 2011, 0(2): 42-45.
[5] 胡建平, 蔡吉喆, 肇研, 刘建华. Nomex/氰酸酯树脂夹层复合材料耐湿热性研究[J]. 材料工程, 2010, 0(9): 58-61.
[6] 杨程, 成波, 滕乐金, 王锦鹏. 金-烷基硫醇的自组装及其聚合物基复合材料的介电性能[J]. 材料工程, 2010, 0(5): 34-37.
[7] 胡建平, 蔡吉喆, 肇研, 刘建华. 湿热环境对蜂窝夹层复合材料性能的影响[J]. 材料工程, 2010, 0(11): 43-47.
[8] 郑文景, 周万城, 罗发, 于新民. SiC纤维表面C涂层的制备及介电性能研究[J]. 材料工程, 2009, 0(11): 36-39.
[9] 周昌荣, 刘心宇. Y2O3掺杂(Bi0.5Na0.5)0.94Ba0.06TiO3无铅压电陶瓷的研究[J]. 材料工程, 2008, 0(7): 12-14.
[10] 廖运文, 肖定全. 无铅压电陶瓷Bi0.5(Na0.90-xKxLi0.10)0.5TiO3-KNbO3的微结构与电学性能[J]. 材料工程, 2008, 0(5): 39-42.
[11] 易回阳, 陈芳, 罗四清. HDPE/CB-MWNTs复合材料体系PTC效应[J]. 材料工程, 2008, 0(10): 43-45,49.
[12] 姚澜, 李文斌, 邱夷平. 三维正交机织复合材料的拉伸力学性能及介电性能研究[J]. 材料工程, 2007, 0(2): 23-25,29.
[13] 吕安国, 丘泰, 周洪庆, 刘敏, 杨春花, 沈朝忠. 硼硅酸玻璃对CaO-B2O3-SiO2玻璃陶瓷结构和性能的影响[J]. 材料工程, 2007, 0(11): 41-44.
[14] 曹林洪, 徐卓, 姚熹, 张瑞明, 李岩. 氟取代PMN-PT陶瓷的制备与性能研究[J]. 材料工程, 2007, 0(11): 54-57,61.
[15] 云斯宁, 王晓莉, 孙晓亮. Ba1-xSrxTi0.88Sn0.12O3陶瓷结构与介电性能的研究[J]. 材料工程, 2006, 0(9): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn