Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 17-22    DOI: 10.3969/j.issn.1001-4381.2013.04.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究
孙莉莉, 钟艳莉
北京航空材料研究院,北京 100095
Crystallization and Dielectric Properties of Carbon Nanofiber/High-density Polyethylene Composites
SUN Li-li, ZHONG Yan-li
Beijing Institute of Aeronautical Materials,Beijing 100095,China
全文: PDF(3086 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用新型纳米材料——碳纳米纤维(CNF)对高密度聚乙烯(HDPE)进行改性,采用转矩流变仪熔融共混和模压两步法制备1%~20%(质量分数,下同)CNF/HDPE复合材料。研究了CNF的分散特性及其对HDPE材料结晶行为和介电性能的影响。结果表明:CNF可良好分散于HDPE基体中,同时CNF会导致HDPE的结晶度和晶粒尺寸发生变化,并促进HDPE沿(110)晶面取向生长;另一方面,复合材料的介电常数随CNF含量增加而大幅度提高,当CNF含量为20%时,复合材料在103Hz下的介电常数达到580,比HDPE提高~150倍;同时由于CNF的存在,与介电常数不随频率变化的HDPE不同,复合材料的介电常数表现出强烈频率依赖性。CNF对复合材料的AC导电率也有显著影响,当CNF含量达到10%以上时,AC导电率表现出明显的直流特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙莉莉
钟艳莉
关键词 碳纳米纤维高密度聚乙烯结晶行为介电性能    
Abstract:An attractive type of nanofiller-carbon nanofiber (CNF) was used to modify high-density polyethylene (HDPE), in which the nanocomposites with 1%-20% CNFs were prepared via a two-step process including melt mixing and hot press. The crystallization and dielectric properties of CNF/HDPE composites, as well as the dispersion of CNFs, were investigated . The results showed that CNFs were well dispersed in HDPE. It was also demonstrated that the crystallinity and crystal size of HDPE were influenced by the introduction of CNFs. The (110) planes of HDPE was also enhanced as proved with the increased intensity of the characteristic peak. In addition, the dielectric constant of nanocomposites was dramatically improved with higher CNF contents. The highest dielectric constant, 580 at 103Hz, was achieved with 20% CNFs, which was about 150 times higher than that of pure HDPE. Simultaneously, the dielectric constant of nanocomposites showed high dependence on the frequency due to the existence of CNFs, compared with the independent dielectric constant of pure HDPE. The AC conductivity of nanocomposites was also greatly affected by CNF,the characteristic of direct conductivity was obviously exhibited with the CNF concentration higher than 10%.
Key wordsCNF    HDPE    crystallization    dielectric property
收稿日期: 2012-02-11      出版日期: 2013-04-20
中图分类号: 

TQ325.12

 
作者简介: 孙莉莉(1983—),女,博士,工程师,研究方向为高分子材料及复合材料,联系地址:北京航空材料研究院光学透明结构与功能材料技术研究室(100095),E-mail:lilisun0822@gmail.com
引用本文:   
孙莉莉, 钟艳莉. 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程, 2013, 0(4): 17-22.
SUN Li-li, ZHONG Yan-li. Crystallization and Dielectric Properties of Carbon Nanofiber/High-density Polyethylene Composites. Journal of Materials Engineering, 2013, 0(4): 17-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.004      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/17
[1] AL-SALEH M H, SUNDARARAJ U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2-22.

[2] SHEN Y, LIN Y H, NAN C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles[J]. Adv Funct Mater,2007,17(14):2405-2410.

[3] YANG S, BENITEZ R, FUENTES A, et al. Dielectric analysis of VGCNF reinforced polyethylene composites[J]. Composites Science and Technology,2007,67(6):1159-1166.

[4] 申玉芳, 邹正光, 李合, 等. 高介电聚合物/无机复合材料研究进展[J]. 材料导报,2009,23(2):29-34.SHEN Y F, ZOU Z G, LI H, et al. Research advances in high-dielectric-constant polymer/inorganic composites[J]. Materials Review,2009,23(2):29-34.

[5] 邢光建, 杨志明, 杨剑, 等. 高介电性能的陶瓷-聚合物复合材料的现状研究[J]. 高分子材料科学与工程,2005,21(3):54-58. XING G J, YANG Z M, YANG J, et al. Research situation of ceramic-polymer composite with high dielectric properties[J]. Polymer Materials Science and Engineering,2005,21(3):54-58.

[6] REFFAEE A S A, NASHAR D E E, ABD-EL-MESSIEH S L, et al. Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold[J]. Materials and Design,2009,30(9):3760-3769.

[7] HUANG X Y, JIANG P K, KIM C, et al. Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics[J]. Composites Science and Technology,2008,68(9):2134-2140.

[8] NIKKHAH S J, RAMAZANI A S A, BANIASADI H, et al. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler-Natta catalyst[J]. Materials and Design,2009,30(7):2309-2315.

[9] JEON K, LUMATA L, TOKUMOTO T, et al. Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes-high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM[J]. Polymer,2007,48(16):4751-4764.

[10] YUAN Q, GUDAVALLI R, MISRA R D K. Nanoparticle effects on the crystallization of polyethylene at elevated pressures[J].Materials Science and Engineering:A,2008,492(1-2):434-442.

[11] TIAN J H, YU W, ZHOU C X. Crystallization behaviors of linear and long chain branched polypropylene[J]. Inc J Appl Polym Sci,2007,104(6):3592-3600.

[12] 解云川, 范晓东, 孔杰, 等. 聚乙烯/蒙脱土复合材料的结晶行为[J]. 高分子材料科学与工程,2005,21(3):117-120. XIE Y C, FAN X D, KONG J, et al. Study on the crystallization behaviors of polyethylene/MMT hybrid system[J]. Polymer Materials Science and Engineering,2005,21(3):117-120.

[13] LOZANO K, BARRERA E A. Nanofiber-reinforced thermoplastic composites. I. thermoanalytical and mechanical analysis[J]. J Appl Polym Sci,2001,79(1):125-133.

[14] 倪卓, 习雯影, 杨松峰, 等. DMDBX对聚乙烯结晶结构及性能的影响[J]. 深圳大学学报:理工版,2009,26(1):65-71. NI Z, XI W Y, YANG S F, et al. Effect of DMDBX on crystal structures and crystallization behaviors of polyethylene[J]. Journal of Shenzhen University(Science & Engineering),2009,26(1):65-71.

[15] SUI G, ZHONG W H, REN X, et al. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers[J]. Materials Chemistry and Physics,2009,115(1):404-412.

[16] 唐龙祥, 严满清, 刘春华, 等. 紫外光交联聚乙烯的结晶行为[J]. 应用化学,2009,26(9):1019-1022. TANG L X, YAN M Q, LIU C H, et al. Studies on crystallization behavior of UV-photocrosslinked high-density polyethylene[J].Chinese Journal of Applied Chemistry,2009,26(9):1019-1022.

[17] MCNALLY T, POTSCHKE P, HALLEY P, et al. Polyethylene multiwalled carbon nanotube composites[J]. Polymer,2005,46(19):8222-8232.

[18] ZHOU O, FLEMING R M, MURPHY D W, et al. Defects in carbon nanostructures[J]. Science,1994,263(5154):1744-1747.

[19] SUI G, JANA S, ZHONG W H, et al. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites[J]. Acta Materialia,2008,56(10):2381-2388.

[20] WANG W, SHEN D, BAO M, et al. Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer[J]. Macromolecules,2005,38(6):2247-2252.

[21] LI J Y. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction[J]. Phys Rev Lett,2003,90(21):217601.

[22] AHMAD K, PAN W, SHI S L. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites[J]. Applied Physics Letters,2006,89(13):133122.

[23] HO C H, LIU C D, HSIEH C H, et al. High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization[J]. Synthetic Metals,2008,158(15):630-637.

[24] RAJA V, SHARMA A K, NARASIMHA V V R. Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films[J]. Mater Lett,2004,58(26):3242-3247.

[25] WILKINSON D, LANGER J S, SEN P N. Enhancement of the dielectric constant near a percolation threshold[J]. Phys Rev B,1983,28(2):1081-1087.

[26] SONG Y, NOH T W, LEE S I, et al. Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold[J]. Phys Rev B,1986,33(2):904-908.

[27] CAO W Q, LU M M, WEN B, et al. MWCNTs/SiO2 composite system: carrier transmission, twin-percolation and dielectric properties[J]. Chin Phys Lett,2011,28(10):107701.
[1] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[2] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[3] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
[4] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[5] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[6] 陈宇飞, 耿成宝, 郭红缘, 岳春艳, 柴铭茁. KH-SiO2/PES/BMI-F51复合材料的介电性能[J]. 材料工程, 2019, 47(8): 103-109.
[7] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[8] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[9] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[10] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[11] 邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
[12] 亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
[13] 刘晶如, 夏阳阳, 高力群, 俞强. HIPS/HDPE共混物的动态黏弹行为与相形态[J]. 材料工程, 2017, 45(5): 52-58.
[14] 何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
[15] 赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45(1): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn