Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 23-27    DOI: 10.3969/j.issn.1001-4381.2013.04.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
7A04铝合金动态再结晶的临界应变研究
李冬勤, 徐磊, 黄兴民, 戴光泽
西南交通大学 材料科学与工程学院 材料先进技术 教育部重点实验室,成都 610031
Investigation on Critical Strain of Dynamic Recrystallization for 7A04 Aluminum Alloy
LI Dong-qin, XU Lei, HUANG Xing-min, DAI Guang-ze
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University,Chengdu 610031,China
全文: PDF(1967 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过Gleeble热力模拟获得了7A04铝合金恒温和恒应变速率条件下的压缩应力-应变曲线,温度范围和应变速率范围分别为350~450℃和0.01~10s-1。在峰值应力的双曲正弦模型基础上,测定了7A04铝合金热变形激活能Q;并利用加工硬化率θ和Sellars模型结构,自主建立了7A04铝合金动态再结晶的临界应变本构模型。结果表明:由动态再结晶临界应变本构模型得到的结果与Gleeble热力模拟实验结果基本吻合,该本构模型可较准确地预测7A04铝合金热成形过程中的动态再结晶发生的临界点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冬勤
徐磊
黄兴民
戴光泽
关键词 临界应变本构模型动态再结晶热变形激活能7A04铝合金    
Abstract:The thermal simulation compression tests of 7A04 aluminum alloy were conducted at 350-450℃ with the strain rate of 0.01-10s-1 on the Gleeble thermal simulation test machine. Based on hyperbolic sine relations of peak stress,the thermal deformation activate energy Q of 7A04 aluminum alloy was determined. Based on Sellars model and work hardening rate θ, the critical strain constitutive model of dynamic recrystallization was established. The results show that comparisons between the simulated and experimental results are satisfactory and the constitutive model of critical strain could be used for indicating the beginning of dynamic recrystallization for 7A04 aluminum alloy.
Key wordscritical strain constitutive model    dynamic recrystallization    thermal deformation active energy    7A04 aluminum alloy
收稿日期: 2012-09-25      出版日期: 2013-04-20
中图分类号:  TG376.2  
基金资助:十一五国家科技支撑计划项目资助(2009BAG12A07);2010年度聘请外籍教师教育部重点项目《高速列车关键材料相关研究》(教外专函[2010]33号);中央高校基本科研业务费专项资金资助(SWJTU12CX011)
通讯作者: 戴光泽(1963-),男,博士,教授,主要从事高速列车关键零部件材料研究,联系地址:西南交通大学材料科学与工程学院(610031)     E-mail: g.dai@163.com
作者简介: 李冬勤(1988-),女,硕士研究生,从事铝合金锻造成形及仿真模拟研究,联系地址:西南交通大学材料科学与工程学院(610031),E-mail:dongdongfly1@163.com
引用本文:   
李冬勤, 徐磊, 黄兴民, 戴光泽. 7A04铝合金动态再结晶的临界应变研究[J]. 材料工程, 2013, 0(4): 23-27.
LI Dong-qin, XU Lei, HUANG Xing-min, DAI Guang-ze. Investigation on Critical Strain of Dynamic Recrystallization for 7A04 Aluminum Alloy. Journal of Materials Engineering, 2013, 0(4): 23-27.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.005      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/23
[1] 潘复生,张丁非,曾苏民,等.铝合金及应用[M].北京:化学工业出版社,2007.118-120.
[2] 张传滨,刘洁,张进学,等.核电用304不锈钢动态再结晶数学模型的建立[J].铸造设备与工艺,2011,(1):16-19.ZHANG Chuan-bin,LIU Jie,ZHANG Jin-xue,et al. Mathematical model of dynamic recrystallization for nuclear power 304 austenitic stainless steel[J].Foundry Equipment and Technology,2011,(1):16-19.
[3] 吴晋彬,刘国权,王承阳,等.钒氮微合金钢动态再结晶动力学及影响因素[J].材料科学与工艺,2011,19(1):85-90. WU Jin-bin,LIU Guo-quan,WANG Cheng-yang,et al.Dynamic recrystallization kinetics and related influence factors of vanadium-nitride microalloyed steel during hot compressive deformation[J].Materials Science and Technology,2011,19(1):85-90.
[4] 权国政,张艳伟,王凤标,等.7075铝合金热塑性变形动态再结晶动力学模型[J].机械工程材料,2011,35(12):97-101.QUAN Guo-zheng,ZHANG Yan-wei,WANG Feng-biao,et al.Kinetics model for dynamic recrystallization of 7075 aluminum alloy in thermoplastic deformation[J].Materials for Mechanical Engineering,2011,35(12):97-101.
[5] SAKAI T,MIURA H,GOLOBORODKO A,et al. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J]. Acta Materialia,2009,57(1):153-162.
[6] JI Guo-liang,LI Fu-guo,LI Qing-hua,et al. Research on the dynamic recrystallization kinetics of Aermet 100 steel[J]. Materials Science and Engineering:A,2010,527(9):2350-2355.
[7] YANG Xu-yue,JI Ze-sheng, MIURA H,et al. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31[J].Transactions of Nonferrous Metals Society of China,2009,19(1):55-60.
[8] POLIAK E I,JONASJ J.Initiation of dynamic recrystallization in constant strain rate hot deformation[J].ISIJ International,2003,43(5):684-691.
[9] MIRZADEH H, NAJAFIZADEH A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials & Design,2010,31(3):1174-1179.
[10] 刘红,王西涛,陈冷.含铌微合金钢的再结晶组织演化模拟[J].北京科技大学学报,2008,30(12):1333-1337. LIU Hong,WANG Xi-tao,CHEN Leng. Microstructural modelling of recrystallization in niobium-containing microalloyed steel[J].Journal of University of Science and Technology Beijing,2008,30(12):1333-1337.
[11] MOMENI A, DEHGHANI K. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps[J].Materials Science and Engineering:A,2011,528(3):1448-1454.
[12] 欧阳德来,鲁世强,黄旭,等.TA15钛合金β区变形动态再结晶的临界条件[J].中国有色金属,2010,20(8):1539-1544. OUYANG De-lai,LU Shi-qiang,HUANG Xu,et al.Critical conditions of dynamic recrystallization during deformation of β area in TA15 titanium alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(8):1539-1544.
[13] 周坚,潘清林,张志野,等.7B50铝合金热变形组织演变[J].热加工工艺,2012,41(2):20-23. ZHOU Jian,PAN Qing-lin,ZHANG Zhi-ye,et al.Microstructure evolution of 7B50 alloy during hot deformation[J].Hot Working Technology,2012,41(2):20-23.
[14] 邬小萍,李德富,郭胜利,等.铸态ZnAl10Cu2合金热变形本构方程[J].锻压技术,2011,36(1):119-123. WU Xiao-ping, LI De-fu, GUO Sheng-li,et al.Constitutive equation of hot deformation for casting ZnAl10Cu2 alloy[J].Forging & Stamping Technology,2011,36(1):119-123.
[15] JONAS J,SELLARS,MCGW J. Strength and structure under hot working condition[J].Tegart Int Metals Reviews,1969,15(1):22-27.
[16] SHI H, MCLAREN A J, SELLARS C M. Constitutive equations for high temperature flow stress of aluminums alloys[J].Materials Science and Engineering:A,1997,13(3):210-216.
[17] MOMENI A,DEHGHANI K.Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing mps[J].Materials Science and Engineering:A,2011,528(3):1448-1454.
[18] YI You-ping,FU Xin,CUI Jin-dong. Prediction of grain size for large-sized aluminium alloy 7050 during hot forming[J]. Journal of Central South University of Technology,2008,15(1):1-5.
[19] 陈贵清,傅高升,颜文煅,等. 3003铝合金热变形行为[J].塑性工程学报,2011,18(4):28-33. CHEN Gui-qing,FU Gao-sheng,YAN Wen-duan,et al.Research on hot deformation behavior of 3003 Al alloy[J].Journal of Plasticity Engineering,2011,18(4):28-33.
[20] 陶杰,姚正军,薛烽.材料科学基础[M].北京:化学工业出版社,2006.452-453.
[21] MYSHLYAEV M M, MCQUEEN H J, MWEMBELA A,et al.Twinning,dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J].Materials Science and Engineering:A,2002,337(1-2):121-133.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[3] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[4] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[5] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
[6] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[7] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[8] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[9] 王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
[10] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[11] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[12] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[13] 谢俊峰, 朱有利, 黄元林, 白昶. 2A12与2A11铝合金超声波焊接工艺与组织研究[J]. 材料工程, 2015, 43(3): 54-59.
[14] 马江南, 杨才福, 王瑞珍. 微合金钢回温变形时的组织转变和铁素体动态再结晶行为[J]. 材料工程, 2015, 43(11): 24-31.
[15] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn