Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 92-96    DOI: 10.3969/j.issn.1001-4381.2013.04.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
块体纳米晶/微米晶复相金属材料研究现状及其发展趋势
王鸿鼎, 喇培清, 师婷, 魏玉鹏, 卢学峰
兰州理工大学 甘肃省有色金属新材料国家重点实验室,兰州 730050
Research Status and Development Trend of Bulk Nano/Micro-crystalline Composite Metallic Materials
WANG Hong-ding, LA Pei-qing, SHI Ting, WEI Yu-peng, LU Xue-feng
State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology,Lanzhou 730050,China
全文: PDF(589 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文综述了纳米晶/微米晶复相金属材料的发展历程、微观组织设计、制备方法及其力学性能与变形机制。概述了现有材料体系和制备方法的优点与不足,指出开发新工艺和进一步优化纳米晶/微米晶复相金属材料的综合性能是未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鸿鼎
喇培清
师婷
魏玉鹏
卢学峰
关键词 纳米晶/微米晶复相制备方法变形机制研究现状    
Abstract:This paper reviewed the development and microstructure design of bulk nano/micro-crystalline composite metallic materials, and its fabrication methods and deformation mechanisms.The material systems and the advantages and disadvantages of these methods were discussed. And it is indicated that the nano/micro-crystalline composite metallic materials will focus on developing the new and superior fabrication method, and finding the optimum microstructure parameters to prepare nano/micro-crystalline composite metallic materials which obtain both high strength and good uniform ductility.
Key wordsnano/micro crystalline composite metal    fabrication method    deformation mechanism    research status
收稿日期: 2012-01-11      出版日期: 2013-04-20
中图分类号:  TG1  
基金资助:国家自然科学基金资助项目(51164022)
通讯作者: 喇培清(1971-),男,博士,研究员,博士生导师,主要从事纳米晶金属、纳米颗粒和高铝不锈钢的研制与开发,联系地址:兰州市七里河区兰工坪路287号兰州理工大学材料学院(730050)     E-mail: pqla@lut.cn
作者简介: 王鸿鼎(1983-),男,博士研究生,主要从事纳米晶金属材料研究,联系地址:兰州市七里河区兰工坪路287号兰州理工大学材料学院(730050),E-mail:wanghongding@gmail.com
引用本文:   
王鸿鼎, 喇培清, 师婷, 魏玉鹏, 卢学峰. 块体纳米晶/微米晶复相金属材料研究现状及其发展趋势[J]. 材料工程, 2013, 0(4): 92-96.
WANG Hong-ding, LA Pei-qing, SHI Ting, WEI Yu-peng, LU Xue-feng. Research Status and Development Trend of Bulk Nano/Micro-crystalline Composite Metallic Materials. Journal of Materials Engineering, 2013, 0(4): 92-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.017      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/92
[1] GLEITER H, MARQUARDT P. Nanocrystalline structures—an approach to new materials?[J]. Zeitschrift Fur Metallkunde, 1984,75(4):263-267.
[2] 聂飞龙, 魏世成, 郑玉峰. 三维块体纳米晶材料的制备及应用[J]. 材料导报,2008,(11):1-7.
[3] KOCH C C. Nanostructured Materials: Processing, Properties, and Applications[M]. Norwich:William Andrew Pub,2007.
[4] WEERTMAN J, FARKAS D, HEMKER K, et al. Structure and mechanical behavior of bulk nanocrystalline materials[J]. Mrs Bulletin,1999,24(2):44-50.
[5] TELLKAMP V L, MELMED A, LAVERNIA E J. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy[J]. Metallurgical and Materials Transactions A, 2001,32(9):2335-2343.
[6] HAYES R W, RODRIGUEZ R, LAVERNIA E J. The mechanical behavior of a cryomilled Al-10Ti-2Cu alloy[J]. Acta Materialia,2001,49(19):4055-4068.
[7] SEMIATIN S L, JATA K V, UCHIC M D, et al. Plastic flow and fracture behavior of an Al-Ti-Cu nanocomposite[J]. Scripta Materialia,2001,44(3):395-400.
[8] WANG Y M, CHEN M W, ZHOU F H, et al. High tensile ductility in a nanostructured metal[J]. Nature,2002,419(6910): 912-915.
[9] MA E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals[J]. Scripta Materialia,2003,49(7):663-668.
[10] WANG Y M, MA E. Three strategies to achieve uniform tensile deformation in a nanostructured metal[J]. Acta Materialia,2004,52(6):1699-1709.
[11] FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331(6024):1587-1590.
[12] YANG D K, HODGSON P D, WEN C E. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure[J]. Scripta Materialia,2010,63(9):941-944.
[13] ZHAO Y, TOPPING T, BINGERT J F, et al. High tensile ductility and strength in bulk nanostructured nickel[J]. Advanced Materials,2008,20(16):3028-3033.
[14] RAMTANI S, DIRRAS G. A bimodal bulk ultra-fine-grained nickel: experimental and micromechanical investigations[J]. Mechanics of Materials,2010,42(5):522-536.
[15] ZHANG X F, FUJITA T, PAN D, et al. Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni[J]. Materials Science and Engineering:A, 2010,527(9):2297-2304.
[16] CHOKSHI A H, MUKHERJEE A K. A topological study of superplastic deformation in an Al-Li alloy with a bimodal grain size distribution[J]. Metallurgical Transactions,1988,19(6):1621-1624.
[17] HAYES R W, RODRIGUEZ R. The mechanical behavior of a cryomilled Al-10Ti-2Cu alloy[J]. Acta Materialia,2001,49(19):4055-4068.
[18] LEE Z, RADMILOVIC V, AHN B, et al. Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy[J]. Metallurgical and Materials Transactions A,2009,41(4):795-801.
[19] TELLKAMP V L, LAVERNIA E J, MELMED A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy[J]. Metallurgical and Materials Transactions A,2001,32(9):2335-2343.
[20] WITKIN D. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility[J]. Scripta Materialia,2003,49(4):297-302.
[21] LEE D G, LEE Y H, LEE C S, et al. Effects of volume fraction of tempered martensite on dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure[J]. Metallurgical and Materials Transactions A,2005,36(3):741-748.
[22] LUI E W, XU W, WU X, et al. Multiscale two-phase Ti-Al with high strength and plasticity through consolidation of particles by severe plastic deformation[J]. Scripta Materialia,2011,65(8):711-714.
[23] XIA S, VYCHIGZHANINA L, WANG J, et al. Controllable bimodal structures in hypo-eutectoid Cu-Al alloy for both high strength and tensile ductility[J]. Materials Science and Engineering:A,2008,490(1-2):471-476.
[24] XIA S H, WANG J T. A micromechanical model of toughening behavior in the dual-phase composite[J]. International Journal of Plasticity,2010,26(10):1442-1460.
[25] AZIZI-ALIZAMINI H, MILITZER M, POOLE W J. A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scripta Materialia,2007,57(12):1065-1068.
[26] HOSSEINI S M, NAJAFIZADEH A, KERMANPUR A. Producing the nano/ultrafine grained low carbon steel by martensite process using plane strain compression[J]. Journal of Materials Processing Technology,2011,211(2):230-236.
[27] VAN SWYGENHOVEN H, DALLA TORRE F, VICTORIA M. Nanocrystalline electrodeposited Ni: microstructure and tensile properties[J]. Acta Materialia,2002,50(15):3957-3970.
[28] DA-WEI W, HAI-BO J, JIE Y, et al. Mechanical reinforcement and piezoelectric properties of PZT ceramics embedded with nano-crystalline[J]. Chinese Physics Letters,2010,27:047701.
[29] HAN B Q, LEE Z, WITKIN D, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys[J]. Metallurgical and Materials Transactions A,2005,36(4):957-965.
[30] WEN C E, YANG D K, HODGSON P D. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure[J]. Scripta Materialia,2010,63(9):941-944.
[31] WANG J T, XIA S H, VYCHIGZHANINA L V, et al. Controllable bimodal structures in hypo-eutectoid Cu-Al alloy for both high strength and tensile ductility[J]. Materials Science and Engineering:A,2008,490(1-2):471-476.
[32] JIA D, RAMESH K T, MA E. Failure mode and dynamic behavior of nanophase iron under compression[J]. Scripta Materialia,1999,42(1):73-78.
[33] KIM K B, DAS J, BAIER F, et al. Propagation of shear bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during deformation[J]. Applied Physics Letters,2005,86(17):171909-171911.
[34] LEE Z, RADMILOVIC V, AHN B, et al. Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy[J]. Metallurgical and Materials Transactions A,2010,41(4):795-801.
[35] 夏少华. 微米晶/超细晶复合增塑及其机制研究.南京:南京理工大学.2010.
[36] LA P Q, WEI Y P, YANG Y, et al. Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al alloy with 5 wt.% Cu prepared by aluminothermic reaction[J]. Materials Science and Engineering:A,2011,528(24):7140-7148.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[4] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[5] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[6] 李莹莹, 王昉, 刘其春, 张东敏, 张雪, 马青玉, 顾正桂. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
[7] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[8] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[9] 崔贺帅, 郑彧, 刘杏娥, 杨淑敏, 田根林, 马建锋. 生物质基SiC陶瓷制备的研究进展[J]. 材料工程, 2017, 45(8): 115-122.
[10] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[11] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[12] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[13] 胡圣飞, 魏文闵, 刘清亭, 张荣. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3): 28-34.
[14] 陈永星, 朱胜, 王晓明, 杜文博, 张垚. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138.
[15] 舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn