Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (6): 5-11    DOI: 10.3969/j.issn.1001-4381.2013.06.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
热处理对定向凝固Nb-Ti-Si基超高温合金组织及显微硬度的影响
胡永强, 郭喜平, 郭海生
西北工业大学 凝固技术国家重点实验室,西安 710072
Effects of Heat Treatments on the Microstructure and Microhardness of Directionally Solidified Nb-Ti-Si Based Ultrahigh Temperature Alloy
HU Yong-qiang, GUO Xi-ping, GUO Hai-sheng
State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China
全文: PDF(4111 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对以2.5μm/s和50μm/s抽拉速率定向凝固的Nb-Ti-Si基超高温合金试样,分别进行了在1250, 1350℃和1400℃保温50h的均匀化热处理。结果表明:均匀化热处理后的组织主要由Nbss, β(Nb,X)5Si3及γ(Nb,X)5Si3相组成,在以2.5μm/s抽拉速率定向凝固的试样中还出现了针状Cr2(Nb,Ti)析出相。随均匀化热处理温度的升高,针状析出相的数量增多;经均匀化热处理后定向凝固试样中的大块六边形硅化物的平直边界和尖锐的棱角逐渐圆润;共晶胞中心的细小硅化物逐渐球化,而共晶胞内板条状的硅化物部分碎化,逐渐变成小岛状。热处理后并没有发生β(Nb,X)5Si3向α(Nb,X)5Si3的晶型转变。同定向凝固态相比较,均匀化热处理后合金的显微硬度显著提高,并且随着均匀化热处理温度的升高,合金及各相的显微硬度先升高后降低,在1350℃/50h热处理后显微硬度值最高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 均匀化热处理Nb-Ti-Si基超高温合金组织演变定向凝固显微硬度    
Abstract:Directionally solidified specimens of Nb-Ti-Si based ultrahigh temperature alloy with the withdrawing rates of 2.5μm/s and 50μm/s were homogenized at 1250, 1350℃ and 1400℃ for 50h, respectively. The constituent phases were Nbss, β(Nb,X)5Si3 and γ(Nb,X)5Si3. The needle-like precipitates of Cr2(Nb,Ti) appeared in the specimens directionally solidified at the withdrawing rate of 2.5μm/s after homogenizing treatments, and its amount increased with the homogenizing temperatures. After homogenizing treatments, the straight boundaries and sharp edges of the primary hexagonal silicides became smooth, the fine silicides in the center of the eutectic cells became spheroidzed, and some silicide blocks in the eutectic cells broke into small ones. The transformation from β(Nb,X)5Si3 to α(Nb,X)5Si3 did not occur during the homogenizing treatments. After homogenizing treatments, the microhardness of the alloy increased remarkably, and its value first increased and then decreased with the increasing of the homogenizing temperatures. The maximum value of microhardness of the constitute phases occurred in the specimens homogenized at 1350℃ for 50h.
Key wordshomogenizing treatment    Nb-Ti-Si based ultrahigh temperature alloy    microstructural evolution    directional solidification    microhardness
收稿日期: 2012-02-04      出版日期: 2013-06-20
1:  TG166.7  
基金资助:

国家自然科学基金资助项目(51071124);博士点基金资助项目(20096102110012)

通讯作者: 郭喜平(1963-),男,工学博士,教授/博导,联系地址:陕西西安西北工业大学凝固技术国家重点实验室(710072)     E-mail: xpguo@nwpu.edu.cn
作者简介: 胡永强(1984-),男,硕士研究生,研究方向为难熔金属间化合物结构材料,联系地址:陕西西安西北工业大学凝固技术国家重点实验室(710072),E-mail:hyq_0822@163.com
引用本文:   
胡永强, 郭喜平, 郭海生. 热处理对定向凝固Nb-Ti-Si基超高温合金组织及显微硬度的影响[J]. 材料工程, 2013, 0(6): 5-11.
HU Yong-qiang, GUO Xi-ping, GUO Hai-sheng. Effects of Heat Treatments on the Microstructure and Microhardness of Directionally Solidified Nb-Ti-Si Based Ultrahigh Temperature Alloy. Journal of Materials Engineering, 2013, 0(6): 5-11.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.06.002      或      http://jme.biam.ac.cn/CN/Y2013/V0/I6/5
[1] GUO X P, GAO L M, GUAN P. Microstructure and mechanical properties of an advanced niobium based ultrahigh temperature alloy [J]. Materials Science Forum,2007,539-543:3690-3695.
[2] GUO H S, GUO X P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scripta Materialia, 2011, 64(7): 637-640.
[3] CHAN K S, DAVIDSON D L. Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach [J]. Metallurgical and Materials Transactions A, 2003, 34(9): 1833-1849.
[4] TEWARI R, SONG H, DEY G K, et al. Microstructural evolution in niobium based alloys [J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1506-1518.
[5] BEWLAY B P, JACKSON M R, ZHAO J C, et al. A review of very-high temperature Nb-silicide-based composites [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2043-2052.
[6] BEWLAY B P, JACKSON M R, LIPSITT H A. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite [J]. Metallurgical and Materials Transactions A, 1996, 27(12): 3801-3808.
[7] SHA J B, HIRAI H, TABARU T, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures [J]. Metallurgical and Materials Transactions A, 2003, 34(1): 85-94.
[8] 贾丽娜, 郭喜平. 合金化和热处理对难熔金属硅化物基合金组织和性能影响的研究现状[J].稀有金属材料与工程, 2007, 36(7): 1304-1308.JIA Li-na, GUO Xi-ping. Effects of alloying elements and heat treatments on the microstructure and mechanical properties of refractory metal silicide-based alloys [J]. Rare Metal Materials and Engineering, 2007, 36(7): 1304-1308.
[9] GUO H S, GUO X P. Microstructure and microhardness of directionally solidified and heat-treated Nb-Ti-Si based ultrahigh temperature alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(6): 1283-1290.
[10] MENDIRATTA M G, DIMIDUK D M. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system [J]. Scripta Metallurgica, 1991, 25(1): 237-242.
[11] 王勇, 郭喜平, 张超峰,等. 电弧熔炼Nb-Ti-Si合金的组织和室温力学性能[J].特种铸造及有色合金, 2010, 30(6): 556-561. WANG Yong, GUO Xi-ping, ZHANG Chao-feng, et al. Microstructure and ambient mechanical properties of Nb-Ti-Si based alloy prepared by consumable arc melting [J]. Special Casting and Nonferrous Alloys, 2010, 30(6): 556-561.
[12] ZELENITSAS K, TSAKIROPOULOS P. Study of the role of Al and Cr additions in the microstructure of Nb-Ti-Si in situ compositions [J]. Intermetallics, 2005, 13(10): 1079-1095.
[13] ZELENITSAS K, TSAKIROPOULOS P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800℃ [J]. Materials Science and Engineering A, 2006, 416(1-2): 269-280.
[14] TEWARI R, SONG H K, VASUDEVAN V K, et al. Microstructural characterization of multicomponent Nb-Ti-Si-Cr-Al-X alloys [J]. Metallurgical and Materials Transactions A, 2006, 37(9): 2669-2682.
[15] MURRAY J L. The Cr-Ti (chromium-titanium) system [J]. Journal of Phase Equilibria, 1981, 2(2): 174-181.
[16] VENKATRAMAN M, NEUMANN J P. The Cr-Nb (chromium-niobium) system [J]. Journal of Phase Equilibria, 1986, 7(5): 462-466.
[17] OKAMOTO H. Cr-Si (chromium-silicon) [J]. Journal of Phase Equilibria, 1997, 18(2): 222.
[1] 卢棋, 何国球, 陈淑娟, 佘萌, 刘颺, 杨洋, 朱旻昊. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8-12.
[2] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
[3] 杜红燕, 李亚江. AZ31/7005异种材料填丝GTAW焊接接头的组织与性能[J]. 材料工程, 2014, 0(9): 14-19.
[4] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[5] 杨亮, 李嘉荣, 金海鹏, 谢洪吉, 韩梅, 刘世忠. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程, 2014, 0(11): 15-22.
[6] 占礼春, 迟宏宵, 马党参, 付锐, 蒋业华. 电渣重熔连续定向凝固M2高速钢铸态组织的研究[J]. 材料工程, 2013, 0(7): 29-34.
[7] 黄春杰, 李文亚, 余敏, 廖汉林. 冷喷涂制备颗粒增强钛基复合材料涂层研究[J]. 材料工程, 2013, 0(4): 1-5,11.
[8] 胡小华, 张安峰, 李涤尘, 鲁中良, 贺斌, 葛江波. 热处理对激光金属成形DZ125L高温合金组织及硬度的影响[J]. 材料工程, 2013, (2): 12-16.
[9] 崔春娟, 张军, 吴昆, 邹德宁, 刘林, 傅恒志. 凝固速率对Si-Ta合金固液界面稳定性的影响[J]. 材料工程, 2012, 0(8): 60-64.
[10] 董鹏, 孙大千, 李洪梅, 宫文彪, 刘杰. 6005A-T6铝合金搅拌摩擦焊接头组织与力学性能特征[J]. 材料工程, 2012, 0(4): 27-31.
[11] 彭建, 佘欢, 陶健全, 王小红, 潘复生. 冷却过程对AZ61镁合金凝固组织的影响[J]. 材料工程, 2012, 0(2): 58-61.
[12] 曹腊梅, 杨曦桥, 薛明, 蔡启舟. 定向凝固过程中温度参数对含Re镍基单晶高温合金铸态组织的影响[J]. 材料工程, 2012, 0(10): 8-11.
[13] 赵新宝, 刘林, 杨初斌, 张军, 李玉龙, 傅恒志. 镍基单晶高温合金凝固缺陷研究进展[J]. 材料工程, 2012, 0(1): 93-98.
[14] 司乃潮, 许能俊, 司松海, 李云达, 史剑. 温度梯度对定向凝固Al-4.5%Cu合金一次枝晶间距的影响[J]. 材料工程, 2011, 0(4): 75-79.
[15] 王晓荣, 王新洪, 杜宝帅, 王承伟. 激光熔覆Fe-Ti-V-Cr-C合金涂层的微观组织和性能[J]. 材料工程, 2011, 0(3): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn