Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (6): 18-24    DOI: 10.3969/j.issn.1001-4381.2013.06.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
添加剂和电流密度对镍钴合金电铸层组织结构的影响
裴和中1, 黄攀1, 史庆南1, 陆峰2, 张俊3, 张国亮1
1. 昆明理工大学 材料科学与工程学院,昆明 650093;
2. 北京航空材料 研究院,北京 100095;
3. 云南驰宏锌锗股份有限公司,昆明 650093
Influences of Additive and Current Density on the Microstructure of the Electroforming Ni-Co Alloy
PEI He-zhong1, HUANG Pan1, SHI Qing-nan1, LU Feng2, ZHANG Jun3, ZHANG Guo-liang1
1. Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;
2. Beijing Institute of Aeronautical Materials,Beijing 100095,China;
3. Yunnan Chihong Zn&Ge Co.,Ltd.,Kunming 650093,China
全文: PDF(1905 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究了添加剂、电流密度对镍钴合金电铸层应力和钴含量的影响。采用SEM、能谱仪和X射线衍射分析了添加剂和电流密度对铸层形貌及微观结构的影响。结果表明:添加剂TN2能够使铸层产生压应力;TN3能够使铸层产生张应力,TN3与TN2配合使用,能够使铸层应力达到平衡值零。电流密度增加时,当电流密度小于6A/dm2时,铸层应力随之增加;当电流密度大于6A/dm2时,铸层应力随之减小。添加剂对铸层钴含量影响不明显而电流密度对铸层钴含量的影响较明显;TN2,TN3的加入能够使铸层更平滑、晶粒细致紧密。添加剂TN2对衍射峰(200)影响较大,对晶面具有一定的选择性;添加剂TN3对晶面具有较强的选择性,易在(200)面吸附,抑制其生长,此时晶体的生长方向主要为[100]。随着电流密度的增大,衍射峰出现宽化的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 电铸镍钴合金添加剂电流密度应力钴含量组织形貌    
Abstract:The influences of additives and current density on the stress and cobalt content of nickel-cobalt alloy electroforming layer were studied. The effects of additives and current density to the morphology and microstructure of nickel-cobalt alloy electroforming layer were investigated by SEM, EDS and X-ray diffraction. The results showed that compressive stress was generated in the electroforming layer when the additive TN2 added in the electroforming solution; the additive TN3 could make tensile stress. So electroforming layer might have a balance of zero stress by adding TN2 and TN3 together. When the current density was less than 6A/dm2, the stress of electroforming layer increased along with the current density; when the current density was greater than 6A/dm2, the stress of electroforming layer decreased along with the current density. The additives’ influence on the cobalt content of electroforming layer was not obvious. The current density’s influence on the cobalt content of electroforming layer was more obvious. Smoother and finer grain could be acquired when the TN2 or TN3 added in the electroforming solution. The additive TN2 had a large effect on the diffraction peak(200)and certain selectivity to the crystal face.The additive TN3 had a strong selectivity to the crystal face, easily adsorbed on the (200) surfaces to inhibit their growth, so the crystal growth direction was mainly [100]. With the current density increasing, the diffraction peak had the widening trend.
Key wordselectroforming nickel-cobalt alloy    additive    current density    stress    cobalt content    morphology
收稿日期: 2012-01-09      出版日期: 2013-06-20
中图分类号: 

TQ153.4

 
通讯作者: 史庆南(1956-),男,教授,研究方向为材料成形与组织性能控制、材料制备与加工过程模拟,联系地址:云南省昆明市昆明理工大学莲华校区材料科学与工程学院材料加工工程系(650093)     E-mail: shikust@vip.163.com
作者简介: 裴和中(1963-),男,副教授,研究方向为表面技术与功能膜材料、腐蚀理论与防腐蚀技术,联系地址:云南省昆明市昆明理工大学莲华校区材料科学与工程学院材料加工工程系(650093),E-mail:peihezhong@vip.qq.com
引用本文:   
裴和中, 黄攀, 史庆南, 陆峰, 张俊, 张国亮. 添加剂和电流密度对镍钴合金电铸层组织结构的影响[J]. 材料工程, 2013, 0(6): 18-24.
PEI He-zhong, HUANG Pan, SHI Qing-nan, LU Feng, ZHANG Jun, ZHANG Guo-liang. Influences of Additive and Current Density on the Microstructure of the Electroforming Ni-Co Alloy. Journal of Materials Engineering, 2013, 0(6): 18-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.06.004      或      http://jme.biam.ac.cn/CN/Y2013/V0/I6/18
[1] 李松,马立娟.复合材料模具表面电铸镍钴合金研究[J].电镀与涂饰,2006,25(10):1—4.LI Song, MA Li-juan. Study on electroformed nickel-cobalt alloy on the surface of composite mould [J]. Electroplating & Finishing, 2006,25(10):1—4.

[2] 李学磊,朱增伟,朱荻.辅助摩擦电铸Ni-Mn合金的力学性能[J].航空材料学报,2011,31(3):65-70.LI Xue-lei,ZHU Zeng-wei,ZHU Di.Mechanical properties of Ni-Mn alloy electroformed with abrasion-assisted method[J].Journal of Aeronautical Materials,2011,31(3):65-70.

[3] SRIVASTAVA M, SELVI V E, GRIPS V K W, et al. Corrosion resistance and microstructure of electrodeposited nickel-cobalt alloy coatings [J]. Surface & Coatings Technology, 2006, 201(6): 3051—3060.

[4] ORIÑÁKOVÁ R, ORIÑÁK A, VERING G, et al. Influence of pH on the electrolytic deposition of Ni-Co films [J]. Thin Solid Films, 2008, 516(10):3045—3050.

[5] 张俊,裴和中,张国亮,等.添加剂及波形对镍钴合金电铸液的分散能力的影响[J].材料保护,2009,42(9):30—32.ZHANG Jun, PEI He-zhong, ZHANG Guo-liang, et al. Affection of additive and waveform on the throwing power of Ni-Co alloy electroforming solution [J]. Materials Protection, 2009,42(9):30—32.

[6] TURY B,RADNCZI G Z,RADNCZI G, et al. Microstructure properties of pulse plated Ni-Co alloy [J]. Surface & Coatings Technology, 2007,202(2):331—335.

[7] 曾华梁,吴仲达,陈钊武,等.电镀工艺手册[M].北京:机械工业出版社,2002.

[8] 肖亚庆.铝加工技术实用手册[M].北京:冶金工业出版社,2005.

[9] EL-SHERIK A M, SHIROKOFF J, ERB U.Stress measurements in nanocry stalline Ni electrodeposit [J]. Journal of Alloys and Compounds, 2005, 389(1-2):140—143.

[10] 黄子勋,吴纯素.电镀理论[M].北京:中国农业机械出版社,1982.

[11] 王伊卿,赵文轸,唐一平,等.Ni-Co合金电铸工艺及性能研究[J].兵器材料科学与工程,2000,23(3):39—43. WANG Yi-qing, ZHAO Wen-zhen, TANG Yi-ping, et al. Study on electroforming processing and properties of Ni-Co alloy [J]. Ordnance Material Science and Engineering, 2000,23(3):39—43.

[12] 张芳,荆天辅,乔桂英,等.脉冲电沉积钴镍合金层微观结构的研究[J].电镀与涂饰,2001,20(6):1—3. ZHANG Fang, JING Tian-fu, QIAO Gui-ying.Studies on the microstructure of pulse electrodeposited cobalt- nickel alloy deposits [J].Electroplating & Finishing,2001,20(6):1—3.

[13] 许伟长,戴品强,郑耀东.钴含量对电沉积纳米晶镍钴合金组织与力学性能的影响[J].中国有色金属学报,2010,20(1):92—99. XU Wei-chang, DAI Pin-qiang, ZHENG Yao-dong. Effect of Co content on structures and mechanical properties of electrodeposited nanocrystalline Ni-Co alloys [J]. The Chinese Journal of Nonferrous Metals,2010,20(1):92—99.
[1] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[2] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[3] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[4] 孟凡善, 李征, 丁昊昊, 王文健, 刘启跃. 油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究[J]. 材料工程, 2020, 48(5): 160-167.
[5] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[6] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[7] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[8] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[9] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[10] 葛勇, 王博伦, 相宁, 王韬, 孙琦伟, 颜悦. 二次注射成型光学制件厚度截面的残余应力分析[J]. 材料工程, 2020, 48(10): 88-95.
[11] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
[12] 贾东瑞, 王越, 刘正, 毛萍莉, 王峰, 王志. Y含量对MgZn9YxZr0.5合金热裂敏感性的影响[J]. 材料工程, 2019, 47(7): 126-133.
[13] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[14] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[15] 徐顺建. 添加剂辅助水热热解制备尺寸可控纳米孔碳微球[J]. 材料工程, 2019, 47(5): 137-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn