Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (6): 40-44    DOI: 10.3969/j.issn.1001-4381.2013.06.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
大变形量近等温锻造开坯对TiAl合金组织与性能的影响
司家勇1, 李胜2, 张继2
1. 中南林业科技大学 机电工程学院,长沙 410004;
2. 钢铁研究总院 高温材料研究所,北京 100081
Effects of Large Deformation Near-isothermal Forging on Microstructures and Properties of TiAl Alloy
SI Jia-yong1, LI Sheng2, ZHANG Ji2
1. College of Mechanical & Electrical Engineering,Central South University of Forestry & Technology,Changsha 410004,China;
2. High Temperature Material Research Institute,Central Iron & Steel Research Institute,Beijing 100081,China
全文: PDF(3338 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用近等温锻造开坯工艺实验定量研究了增大变形量对Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金变形组织均匀性和力学性能稳定性的作用。通过锻坯组织观察分析及硬度、强度分布测试,揭示了TiAl合金近等温锻造过程中变形量与宏观组织和微观组织均匀性的基本关系。结果表明:近等温锻造变形量为65%,70%,75%,80%,85%时,随着变形量的增大,TiAl合金锻坯内的宏观变形流线分布趋于均匀,均匀变形区域面积不断增大,变形量85%时均匀变形区面积增加至68.0%,微观变形组织由等轴的γ和α2,以及很少量的残余层片团组成,晶粒尺寸明显细化,且等轴组织在合金中占到了绝大部分;锻坯硬度分布测试表明随着近等温锻造变形量的增大,均匀变形区域的硬度变化基本趋于均匀一致,且硬度平均值也在不断增高;锻坯难变形区和均匀变形区经1250℃/15h/AC热处理后取样进行室温压缩测试,随着近等温锻造变形量的增加锻坯各部位室温压缩应力应变数据分散度降低,性能稳定性提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 TiAl合金大变形量近等温锻造组织性能    
Abstract:The effects of increasing deformation strain on the microstructure uniformity and mechanical property stability of Ti-46.5Al-2.5V-1.0Cr-0.3Ni alloy were quantitative studied by single near-isothermal forging. The observed microstructure and measured hardness and strength can revealing the basic relationship among deformation strain, macrostructure and microstructure. The results show that distribution of flow lines is more uniform and the area of uniform zone is enlarged with the engineering strain raised from 65%, 70%, 75%, 80% to 85%. In the forged pancake, the proportion of uniform zone expand to 68.0% when the strain is 85%. And the deformation microstructure is composed by equiaxed γ,α2 and a few remnant laminas. The grain dimension is obviously refined and the vast majority is equiaxial microstructure. The hardness testing shows that hardness of uniform zone is tending to be uniformity and the average hardness is continuous to increase. The room temperature compression samples were machined from stagnant zone and uniform zone with heat treatment at 1250℃/15h/AC. The dispersity of room temperature compression results is reduced and it means that property stability is improved with the increased engineering strain.
Key wordsTiAl alloy    large deformation    near-isothermal forging    microstructure and property
收稿日期: 2012-02-08      出版日期: 2013-06-20
中图分类号: 

TG146.2

 
基金资助:

中南林业科技大学青年科学研究基金重点项目(QJ2010001A)

作者简介: 司家勇(1978-),男,副教授,博士,现从事高温合金变形工艺方向研究,联系地址:湖南省长沙市韶山南路498号中南林业科技大学机电学院(410004),E-mail: sjy98106@163.com
引用本文:   
司家勇, 李胜, 张继. 大变形量近等温锻造开坯对TiAl合金组织与性能的影响[J]. 材料工程, 2013, 0(6): 40-44.
SI Jia-yong, LI Sheng, ZHANG Ji. Effects of Large Deformation Near-isothermal Forging on Microstructures and Properties of TiAl Alloy. Journal of Materials Engineering, 2013, 0(6): 40-44.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.06.008      或      http://jme.biam.ac.cn/CN/Y2013/V0/I6/40
[1] SEMIATIN S L. Wrought processing of ingot-metallurgy gamma titanium aluminide alloys. Gamma Titanium Aluminides. Warrendale: TMS, 1995. 509-524.

[2] YAMAGUCHI M, INUI H, ITO K. High-temperature structural intermetallics[J].Acta Metall Mater,2000,48(1):307-322.

[3] SEMIATIN S L, SEETHARAMAN V, JAIN V K. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide[J]. Metall & Mater Trans A,1994, 25A(12): 2753-2768.

[4] FUJIWARA T, NAKAMURA A, HOSOMI M, et al. Deformation of polysynthetically twinned crystals of TiAl with a nearly-stoichiometric composition[J]. Philosophical Magazine A, 1990, 61(4): 591-606.

[5] 张永刚,韩雅芳,陈国良,等. 金属间化合物结构材料[M]. 北京:国防工业出版社,2003.

[6] SI Jia-yong, HAN Peng-biao, ZHANG Ji. The design for the isothermal forging of Ti-46.5Al-2.5V-1.0Cr-0.3Ni alloy[J]. Journal of Iron and Steel Research International, 2010, 17(8): 67-73.

[7] SEMIATIN S L, CHESNUTT J C, AUSTIN C, et al. Processing of intermetallic alloys. Structural Intermetallics. Warrendale: TMS, 1997. 263-276.

[8] SEETHARAMAN V, SEMIATIN S L. Plastic-flow and microstructure evolution during hot deformation of a gamma titanium aluminide alloy[J]. Metall & Mater Trans A, 1997, 28A (11): 2309-2321.

[9] 司家勇,高帆,张继. 变形方向对TiAl合金二次热变形行为的影响[J]. 材料工程, 2010,(12): 51-54.SI Jia-yong,GAO Fan,ZHANG Ji.Effect of direction on flow behavior of TiAl alloy in secondary hot deformation[J].Journal of Materials Engineering,2010,(12):51-54.

[10] 汪大年. 金属塑形成形原理[M]. 北京:机械工业出版社,1982.

[11] KIM Y W. Strength and ductility in TiAl alloys [J]. Intermetallics,1998, 6(7): 623-628.

[12] SEMIATIN S L, SEETHARAMAN V, WEISS I. Hot working of titanium alloys-an overview. WEISS I E, SRINIVASAN R,BANIA P J,et al.Advances in the Science and Technology of Titanium Alloy Processing.Warrendale:TMS,1997.3-73.
[1] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[2] 廖万能, 刘雪峰, 王思清. 控温铸型连铸Cu-Ni-Si合金的加工工艺与组织性能的关系及其机理[J]. 材料工程, 2019, 47(10): 44-52.
[3] 刘政军, 贾华, 李萌. 自保护药芯焊丝堆焊原位合成TiB2-TiC颗粒对堆焊合金组织性能的影响[J]. 材料工程, 2018, 46(7): 106-112.
[4] 范爱一, 李慧中, 梁霄鹏, 陈永辉, 齐叶龙. 热变形Ti-45Al-7Nb-0.3W合金的显微组织与力学性能[J]. 材料工程, 2018, 46(7): 121-126.
[5] 王红卫, 朱春雷, 张继, 曹睿. 不同温度热暴露对铸造TiAl合金室温拉伸塑性的影响[J]. 材料工程, 2018, 46(12): 151-156.
[6] 朱春雷, 李胜, 张继. 有利于铸造TiAl合金增压器涡轮叶片可靠性的组织设计[J]. 材料工程, 2017, 45(6): 36-42.
[7] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[8] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[9] 马李, 何录菊, 邵先亦, 王古平, 张梦贤. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1): 89-95.
[10] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[11] 李涌泉, 谢发勤, 吴向清, 姚小飞. 温度对TiAl合金表面Si-Al-Y共渗层组织结构的影响[J]. 材料工程, 2014, 0(6): 22-27.
[12] 焦泽辉, 宋西平, 张敏, 于慧臣. 全片层与双态组织高铌TiAl合金高温原位拉伸研究[J]. 材料工程, 2013, 0(9): 79-83,90.
[13] 周媛, 熊华平, 毛唯, 陈波, 叶雷. TiAl合金与高温合金的扩散焊接头组织及性能[J]. 材料工程, 2012, 0(8): 88-91,100.
[14] 王祯, 刘雪峰, 何勇, 谢建新. 硅青铜线材无模拉拔工艺与组织性能关系[J]. 材料工程, 2012, 0(5): 59-63.
[15] 陈继平, 钱健清, 李胜祗, 康永林. Ti+Nb和Ti+V超低碳烘烤硬化钢的组织和性能研究[J]. 材料工程, 2012, 0(4): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn