Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (6): 63-66    DOI: 10.3969/j.issn.1001-4381.2013.06.013
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Ti6Al4V表面磁控溅射高硬SiC薄膜的摩擦磨损性能
潘应晖1, 许晓静2
1. 武夷学院 电子工程系,福建 武夷山 354300;
2. 江苏大学 先进成形技术研究所,江苏 镇江 212013
Friction/Wear Properties of Magnetron Sputtered High-hard SiC Films on Ti6Al4V Alloy
PAN Ying-hui1, XU Xiao-jing2
1. Department of Electronic Engineering,Wuyi University,Wuyishan 354300,Fujian,China;
2. Institute of Advanced Forming Technology, Jiangsu University,Zhenjiang 212013,Jiangsu,China
全文: PDF(1756 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用室温磁控溅射技术在Ti6Al4V表面制备出高硬SiC薄膜,对其组织结构、纳米压痕行为和摩擦磨损性能进行了研究。结果表明:实验制备的SiC薄膜呈非晶态,其纳米硬度、弹性模量分别为26.8GPa和229.4GPa;在以氮化硅球(半径为2mm)为对摩件的室温Kokubo人体模拟体液下,其磨损速率在10-5 mm3 m-1 N-1级,载荷低(50g)时摩擦因数约为0.173,载荷高(200g)时摩擦因数约为0.280,此时薄膜自身发生局部破裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 钛基材薄膜纳米压痕摩擦磨损磁控溅射    
Abstract:High-hard SiC film was developed on Ti6Al4V alloy using magnetron sputtering technique at room temperature, and its microstructure, nanoindentation and friction/wear properties were investigated. The results show that the SiC films were amorphous and exhibited the nano-hardness of 26.8GPa and the elastic modulus of 229.4GPa. As sliding against Si3N4 ball (2mm in radius) using ball-on-disc type wear tester under Kokubo SBF at room temperature, the SiC films exhibited the special wear rate in the magnitude order of 10-5 mm3 m-1 N-1 and the friction coefficient of about 0.173 and 0.280 at the load of 50g and 200g. The higher friction coefficient is primarily due to itself breakage of the SiC films.
Key wordstitanium substrate    film    nanoindentation    friction and wear    magnetron sputtering
收稿日期: 2012-02-16      出版日期: 2013-06-20
1:  TG 174.4  
作者简介: 潘应晖(1965-),男,副教授,硕士,研究方向:先进材料制造与性能表征、摩擦学与表面科学技术,联系地址:福建省武夷山市武夷大道16号武夷学院电子工程系 (354300),E-mail:pyhok@126.com
引用本文:   
潘应晖, 许晓静. Ti6Al4V表面磁控溅射高硬SiC薄膜的摩擦磨损性能[J]. 材料工程, 2013, 0(6): 63-66.
PAN Ying-hui, XU Xiao-jing. Friction/Wear Properties of Magnetron Sputtered High-hard SiC Films on Ti6Al4V Alloy. Journal of Materials Engineering, 2013, 0(6): 63-66.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.06.013      或      http://jme.biam.ac.cn/CN/Y2013/V0/I6/63
[1] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review [J]. Progress in Materials Science, 2009, 54 (3): 397-425.
[2] ÖSTERLE W, KLAFFKE D, GRIEPENTROG M, et al. Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces [J]. Wear, 2008, 264(7-8): 505-517.
[3] ESTEVE J, LOUSA A, MARTINEZ E, et al. Amorphous SixC1-x films: an example of materials presenting low indentation hardness and high wear resistance [J]. Diamond and Related Materials, 2001, 10(3-7): 1053-1057.
[4] COSTA A K, CAMARGOJR S S, ACHETE C A, et al. Characterization of ultra-hard silicon carbide coatings deposited by RF magnetron sputtering [J]. Thin Solid Films, 2000, 377-378(12): 243-248.
[5] ORDINE A, ACHETE C A, MATTOS O R, et al.Magnetron sputtered SiC coatings as corrosion protection barriers for steels [J]. Surface and Coatings Technology, 2000, 133-134(11): 583-588.
[6] COSTA A K, CAMARGO JR S S. Amorphous SiC coatings for WC cutting tools [J]. Surface and Coatings Technology, 2003, 163-164(1): 176-180.
[7] BLUM T, DRESLER B, KAβNER ST, et al. Wear-resistant amorphous SiC coatings produced by plasma-enhanced CVD [J]. Surface and Coatings Technology, 1999, 116-119(9): 1024-1028.
[8] ZAYTOUNI M, RIVIERE J P. Wear reduction of TA6V produced by SiC coatings deposited by dynamic ion mixing [J]. Wear, 1996, 197(9): 56-62.
[9] RIVIERE J P, ZAYTOUNI M, DELAFOND J. Characterization and wear behavior of SiC coatings prepared by ion beam assisted deposition [J]. Surface and Coatings Technology, 1996, 84(1-3): 376-382.
[10] ASPENBERG P, ANTTILA A, KONTTINEN Y T, et al. Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits[J]. Biomaterials, 1996, 17(8): 807-812.
[11] SWAIN B P, PATTANAYAK D K. Simulated body fluid (SBF) adsorption onto α-SiC:H thin films deposited by hot wire chemical vapor deposition (HWCVD) [J]. Mater Lett, 2008, 62(20): 3484-3486.
[12] 蒋小松,陈俊英,黄楠.磁控溅射制备TiO2 薄膜对医用NiTi 合金弹簧圈的表面改性[J].功能材料,2007, 38 (8):1282-1286. JIANG Xiao-song,CHEN Jun-ying,HUANG Nan. Preparation of TiO2 films by unbalanced magnetron sputtering for surface modification of biomedical NiTi alloy[J]. Journal of Functional Materials, 2007, 38 (8):1282-1286.
[13] 夏登福,许晓静,卓刘成,等.磁控溅射DLC/SiC/Ti多层膜对镁合金摩擦磨损性能的影响[J]. 航空材料学报,2009,29(4):47-51. XIA Deng-fu,XU Xiao-jing,ZHUO Liu-cheng,et al. Effect of magnetron sputtered DLC/SiC/Ti films on friction/wear behaviors of magnesium alloy[J]. Journal of Aeronautical Materials, 2009,29(4):47-51.
[14] 祝元坤,朱嘉琦,韩杰才,等.磁控溅射制备SiC薄膜的高温热稳定性[J].材料研究学报,2009,23(4):410-414. ZHU Yuan-kun,ZHU Jia-qi,HAN Jie-cai,et al. High-temperature thermal stability research on SiC thin films by magnetron sputtering[J]. Chinese Journal of Materials Research,2009,23(4):410-414.
[15] 许晓静,盛新兰,张体峰.等.磁控溅射掺碳TiB2薄膜的Raman光谱与摩擦行为[J]. 材料工程,2012,(8):30-32.38. XU Xiao-jing, SHENG Xin-lan, ZHANG Ti-feng.et al. Raman spectrum and friction behaviors of carbon-doped TiB2 films prepared by magnetron sputtering[J]. Journal of Materials Engineering, 2012,(8):30-32.38.
[16] KOKUBO T, KUSHITANI H, SAKKA S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3 [J]. Journal of Biomedical Materials Research, 1990, 24(6): 721-734.
[17] XU X J, WANG H, CHENG X N. Improvement of tribological behaviour of biomedical nanocrystalline titanium by magnetron sputtered DLC/SiC double layer films [J]. Materials Science Forum, 2009, 610/613(9): 1026-1033.
[1] 柳阳, 王东坡, 邓彩艳, 曹舒. Ti-6Al-4V表面超声滚压制备Al2O3膜层的微观组织及性能研究[J]. 材料工程, 2015, 43(7): 8-13.
[2] 邹凯, 李蓉萍, 刘永生, 田磊, 冯松. Sb掺杂ZnTe薄膜结构及其光电性能[J]. 材料工程, 2015, 43(3): 35-41.
[3] 成聪, 陈尚达, 吴勇芝, 黄鸿翔. 不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟[J]. 材料工程, 2015, 43(3): 60-66.
[4] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程, 2015, 43(2): 96-102.
[5] 丁雨田, 王冬强, 胡勇, 彭和思, 马国俊. Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为[J]. 材料工程, 2015, 43(10): 42-48.
[6] 郑金鹏, 沈明学, 厉淦, 彭旭东. 丁腈橡胶在硬质颗粒环境下的摩擦磨损特性[J]. 材料工程, 2015, 43(10): 79-84.
[7] 李文英, 钟建, 张柯, 汪元元, 尹桂林, 何丹农. 退火对ZnO/Cu/ZnO透明导电薄膜性能的影响[J]. 材料工程, 2015, 43(1): 44-48.
[8] 彭洁, 李子全, 刘劲松, 蒋明, 许奇. 退火温度对Ge/SiO2多层膜的结构和光学性能的影响[J]. 材料工程, 2014, 0(9): 32-38.
[9] 王彬, 薛文斌, 金小越, 吴杰, 华铭, 吴正龙. Q235低碳钢等离子体电解硼碳共渗处理及性能分析[J]. 材料工程, 2014, 0(6): 28-34.
[10] 汪怀远, 林珊, 张帅, 杨淑慧, 朱艳吉. 仿生多孔润滑耐磨CF/PTFE/PEEK复合材料的设计及其摩擦学性能[J]. 材料工程, 2014, 0(6): 45-50.
[11] 刘学杰, 魏怀, 任元, 陆峰, 张素慧, 银永杰. 基于第一性原理方法研究基团在CVD金刚石薄膜(001)表面上的生长[J]. 材料工程, 2014, 0(4): 46-52.
[12] 杨坤, 胡志强, 徐书林, 王海权, 于洋, 刘贵山, 姜妍彦, 张海涛. PET衬底上ITO薄膜的制备及光电性能[J]. 材料工程, 2014, 0(3): 71-76.
[13] 赵淑芳, 喻利花, 马冰洋, 许俊华. 不同Ti含量的W-Ti-N复合膜的微结构及性能研究[J]. 材料工程, 2014, 0(12): 23-27.
[14] 王军, 刘莹, 丁红燕. 溅射法制备TiO2薄膜的耐腐蚀性[J]. 材料工程, 2014, 0(12): 34-38.
[15] 王怀勇, 李胜祗, 郭军, 王博, 朱萍, 黄峰. Cu,Ag,Ni掺杂TiB2基涂层的结构及韧性研究[J]. 材料工程, 2014, 0(12): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn