Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (7): 11-15,23    DOI: 10.3969/j.issn.1001-4381.2013.07.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
离心铸造原位生成初生Ti(AlSi)2颗粒增强Al-16Si-6Ti复合材料筒状零件的组织与性能
林雪冬1,2, 刘昌明1, 黄笑宇1
1. 重庆大学 材料科学与工程学院, 重庆 400030;
2. 重庆工程职业技术学院 机械工程学院, 重庆 400037
Microstructures and Properties of Al-16Si-6Ti Composites Tube Reinforced with In-situ Primary Ti(AlSi)2 Particles Fabricated by Centrifugal Casting
LIN Xue-dong1,2, LIU Chang-ming1, HUANG Xiao-yu1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China;
2. College of Mechanical Engineering, Chongqing Vocational Institute of Engineering, Chongqing 400037, China
全文: PDF(3695 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用离心铸造方法制备了Al-16Si-6Ti复合材料筒状零件,使用SEM,EDS及OM观察分析了复合材料中的微观组织,使用Image Tool测算了铸件中初生颗粒的体积分数,测试了复合材料的硬度及耐磨性能。结果表明:离心铸造Al-16Si-6Ti筒状零件沿半径方向形成了具有大量初生Ti(AlSi)2颗粒的外层增强层组织,无初生颗粒的铝基体中间层组织以及含有少量初生Si颗粒的内层组织。从外壁到内壁,铸件的硬度及初生颗粒的体积分数均呈现先由高到低,然后小幅上升的变化规律。铸件外层组织具有最好的耐磨性能。在离心场中,初生Ti(AlSi)2向铸件外侧偏移、聚集,形成了高体积分数的初晶Ti(AlSi)2颗粒增强铸件外层的Al基复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 Al-16Si-6Ti复合材料初生Ti(AlSi)2硬度体积分数离心铸造    
Abstract:The microstructures of the Al-16Si-6Ti composites tube fabricated by centrifugal casting were observed and analyzed by SEM, EDS and OM. The hardness and wear resistance, and the particle volume fraction of the tube were measured by using Image Tool and calculated, respectively. The results show that the tube consists of an outer layer segregating many primary Ti(AlSi)2 particles, the middle layer of the Al matrix having no particles and the inner layer containing some primary Si particles. The hardness decreases gradually firstly and then increases slightly from outer wall to inner wall on the cross section of the tube along the radial direction, which conforms to the variation tendency of the particle volume fraction. In the centrifugal field, the primary Ti(AlSi)2 particles migrate and assemble in the outer layer of the tube to form the Al-16Si-6Ti composites.
Key wordsAl-16Si-6Ti composite    primary Ti(AlSi)2    hardness    volume fraction    centrifugal casting
收稿日期: 2012-03-08      出版日期: 2013-07-20
1:  TB331  
作者简介: 林雪冬(1983-),男,博士,讲师,研究方向:铝基复合材料的制备技术及高性能铝合金零件的开发,联系地址:重庆市沙坪坝区上桥重庆工程职业技术学院机械工程学院(400037),E-mail:dreamerdog@163.com
引用本文:   
林雪冬, 刘昌明, 黄笑宇. 离心铸造原位生成初生Ti(AlSi)2颗粒增强Al-16Si-6Ti复合材料筒状零件的组织与性能[J]. 材料工程, 2013, 0(7): 11-15,23.
LIN Xue-dong, LIU Chang-ming, HUANG Xiao-yu. Microstructures and Properties of Al-16Si-6Ti Composites Tube Reinforced with In-situ Primary Ti(AlSi)2 Particles Fabricated by Centrifugal Casting. Journal of Materials Engineering, 2013, 0(7): 11-15,23.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.07.003      或      http://jme.biam.ac.cn/CN/Y2013/V0/I7/11
[1] TORABIAN H, PATHAK J P, TIWARI S N. Wear characteristics of Al-Si alloys [J]. Wear, 1994, 172(1): 49-58.
[2] 谭银元.离心铸造Al-16wt%Si合金自生梯度复合材料[J].复合材料学报,2002,19(5):47-51.TAN Yin-yuan. In situ gradient composites of Al-16wt%Si alloy by centrifugal casting [J]. Acta Materiae Compositae Sinica, 2002, 19(5):47-51.
[3] 钱建刚,张家祥,王纯,等.AZ91D镁合金表面激光等离子复合喷涂Al-Si/Al+Al2O3涂层的研究[J].航空材料学报,2011,31(3):60-64.QIAN Jian-gang,ZHANG Jia-xiang,WANG Chun,et al.Study on Al-Si/Al+Al2O3 coating of AZ91D Mg alloy by laser plasma hybrid spraying[J].Journal of Aeronautical Materials,2011,31(3):60-64.
[4] 弗兰兹·吕克特,彼得·斯托克,罗兰德·比德曼.超共晶硅铝合金汽缸衬筒及其制造方法[P].中国专利:CN1129743, 1996-08-28.
[5] HA T K, PARK W J,AHN S, et al. Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior [J]. J Mater Process Tech, 2002, 130-131:691-695.
[6] UOZATO S, NAKATA K, USHIO M. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores [J]. Surf Coat Tech, 2005, 200(7):2580-2586.
[7] BOBZIN K, ERNST F, RICHARDT K, et al. Thermal spraying of cylinder bores with the plasma transferred wire arc process [J]. Surf Coat Tech, 2008, 202(18):4438-4443.
[8] ZHAI Y B, LIU C M, WANG K, et al. Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting [J]. T Nonferr Metal Soc, 2010, 20(3):361-370.
[9] FUKUI Y. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force [J]. JSME International Journal Series III-Vibration Control Engineering Engineering for Industry, 1991, 34(1):144-148.
[10] 刘昌明,翟彦博,谢勇,等.内层颗粒增强缸套及其制造方法[P].中国专利:200810070197.0, 2009-01-07.
[11] CHEN X G, FORTIER M. Formation of primary TiAlSi intermetallic compounds in Al-Si foundry alloys [J]. Mater Forum, 2004, 28: 659-665.
[12] RAGHAVAN V. Al-Si-Ti (Aluminum-Silicon-Titanium) [J]. JPEDAV, 2005, 26(6):624-628.
[13] CHOI C J, PARK J K. Effect of Si addition on mechanical alloying behavior and creep properties of Al-10Ti-xSi alloys [J]. Met Mater Int, 1999, 5(2):179-184.
[14] SAHEB N, LAOUI T, DAUD A R. Influence of Ti addition on wear properties of Al-Si eutectic alloys [J]. Wear, 2001, 249(8):656-662.
[15] ZEREN M, KARAKULAK E. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al-Si alloys [J]. J Alloy Compd, 2008, 450(1-2):255-259.
[16] GAO T, LI P, LI Y, et al. Influence of Si and Ti contents on the microstructure, microhardness and performance of TiAlSi intermetallics in Al-Si-Ti alloys [J]. J Alloy Compd, 2011, 509(31):8013-8017.
[17] OGAWA T, WATANABE Y, SATO H, et al. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method [J]. Compos Part A-Appl S, 2006, 37(12):2194-2200.
[18] NOWOTNY H, HUSCHKA H. Studies of the partial systems Al-TiSi2, Al-ZrSi2, Al-WSi2 [J]. Monatsh Chem, 1957, 88:494-501.
[19] BRUKL C, NOWOTNY H, SCHOB O, et al. Die Kristallstrukturen von TiSi, Ti(Al,Si)2 und Mo(Al,Si)2 [J]. Monatsh Chem, 1961, 92:781-788.
[20] SCHOB O, NOWOTNY H, BENESOVSKY F. Die dreistoffe (titan, zirkonium, hafnium)-aluminium-siliziu [J]. Planseeber Pulvermet, 1962,(10):65-71.
[1] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
[2] 林雪冬, 刘昌明, 卢建波. Si含量对离心铸造Al-8.5Ni-xSi复合材料组织与性能的影响[J]. 材料工程, 2015, 43(2): 53-60.
[3] 杜红燕, 李亚江. AZ31/7005异种材料填丝GTAW焊接接头的组织与性能[J]. 材料工程, 2014, 0(9): 14-19.
[4] 刘名涛, 钟喜春, 刘仲武, 曾德长, 李周, 张国庆. 等离子喷涂制备MoSi2-CoNiCrAlY纳米复合涂层的结构与性能[J]. 材料工程, 2014, 0(5): 17-22.
[5] 赵龙志, 焦宇. Al含量对Al-Fe-Si/Al原位复合材料的影响[J]. 材料工程, 2014, 0(4): 7-12.
[6] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[7] 谈淑咏, 吴湘君, 张旭海, 张炎, 蒋建清, 朱雪锋, 江先彪. 层厚比对磁控溅射Cr/CrN多层涂层组织和性能的影响[J]. 材料工程, 2014, 0(11): 28-33.
[8] 吕煜坤, 盛光敏, 尹丽晶. V-N微合金化抗震钢筋铁素体中V(C,N)析出行为分析[J]. 材料工程, 2014, 0(11): 43-49.
[9] 王东, 赵军, 李安海, 崔晓斌. 基于微观结构的WC-Co硬质合金硬度预报模型[J]. 材料工程, 2013, 0(9): 22-26,31.
[10] 庄栋栋, 王作成, 张建强, 陈陪敦, 陈坤, 马正伟, 谷国华. 不同压下率低碳铝镇静钢板再结晶实验研究[J]. 材料工程, 2013, 0(9): 38-43.
[11] 胡永强, 郭喜平, 郭海生. 热处理对定向凝固Nb-Ti-Si基超高温合金组织及显微硬度的影响[J]. 材料工程, 2013, 0(6): 5-11.
[12] 严军, 岑启宏, 蒋业华, 周荣. 高硼中碳合金工具钢的铸态组织[J]. 材料工程, 2013, 0(6): 55-58.
[13] 黄春杰, 李文亚, 余敏, 廖汉林. 冷喷涂制备颗粒增强钛基复合材料涂层研究[J]. 材料工程, 2013, 0(4): 1-5,11.
[14] 胡小华, 张安峰, 李涤尘, 鲁中良, 贺斌, 葛江波. 热处理对激光金属成形DZ125L高温合金组织及硬度的影响[J]. 材料工程, 2013, (2): 12-16.
[15] 吴凤秋, 张保法. C/C复合材料表面硬度对抗氧化性能的影响[J]. 材料工程, 2013, 0(10): 98-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn