Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (8): 16-22    DOI: 10.3969/j.issn.1001-4381.2013.08.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
等离子喷涂MoS2/Cu基复合涂层真空摩擦磨损性能
甄文柱, 梁波
燕山大学 亚稳材料制备技术与科学 国家重点实验室, 河北 秦皇岛 066004
Tribological Behavior of Plasma Sprayed MoS2/Cu Composite Coating Under Vacuum Atmosphere
ZHEN Wen-zhu, LIANG Bo
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
全文: PDF(3805 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以MoS2/Cu复合粉体为原料,采用等离子喷涂技术在2A12铝合金基体上制备MoS2/Cu基复合涂层。运用扫描电镜、能谱、X射线衍射、拉曼光谱等手段对涂层显微结构、磨损表面进行表征,并利用GTM-3E球盘式真空摩擦磨损仪探讨真空环境下MoS2/Cu基复合涂层的摩擦行为。结果表明:MoS2颗粒均匀分布于涂层中;涂层结构比较致密且与铝基体结合牢固;XRD分析表明复合涂层物相组成主要为Cu,MoS2相及Cu2O相。实验条件下复合涂层表现出优异的真空减摩效果,涂层的真空摩擦因数在0.05~0.15之间。真空磨损过程中,MoS2自润滑膜层的形成是涂层低摩擦因数的主要原因;真空磨损机理主要表现为疲劳磨损和脆性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甄文柱
梁波
关键词 等离子喷涂MoS2Cu基复合涂层真空摩擦    
Abstract:MoS2/Cu composite coating was deposited by air plasma spraying on 2A12 aluminum alloy substrate using MoS2/Cu composite powder as raw material. Microstructure and wear surface of coating were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Raman spectra. The tribological properties of as-sprayed coating in vacuum were explored using GTM-3E ball-on-disc vacuum friction and wear instrument. The results showed that MoS2 particles were homogeneously distributed in the as-sprayed coating. The as-sprayed coating was dense and had good bonding with aluminum matrix. XRD analysis demonstrated that Cu, MoS2 and Cu2O phase were observed. Under the test conditions, the as-sprayed coating exhibited excellent friction reducing effect through the addition of MoS2 component, the obtained friction coefficients were in the range from 0.05 to 0.15. The low friction coefficient could be attributed to the formation of uniform MoS2 lubricating transfer film. The main wear mechanisms observed in vacuum were fatigue wear and brittle fracture.
Key wordsplasma spraying    MoS2    Cu-base composite coating    vacuum friction
收稿日期: 2012-07-11      出版日期: 2013-08-20
中图分类号:  TG333  
基金资助:973计划资助项目(2010CB71600)
作者简介: 甄文柱(1987-),男,硕士研究生,从事专业:等离子喷涂MoS2/Cu基复合涂层制备与润滑研究。
引用本文:   
甄文柱, 梁波. 等离子喷涂MoS2/Cu基复合涂层真空摩擦磨损性能[J]. 材料工程, 2013, 0(8): 16-22.
ZHEN Wen-zhu, LIANG Bo. Tribological Behavior of Plasma Sprayed MoS2/Cu Composite Coating Under Vacuum Atmosphere. Journal of Materials Engineering, 2013, 0(8): 16-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.08.003      或      http://jme.biam.ac.cn/CN/Y2013/V0/I8/16
[1] EQUEY S, HOURIET A, MISCHLER S. Wear and frictional mechanisms of copper-based bearing alloys[J].Wear,2011,273(1):9-16.
[2] HYUNG-SEOP S, JUNG-SOO P, YOON-CHUL J,et al. Similar and dissimilar friction welding of Zr-Cu-Al bulk glassy alloys[J]. Journal of Alloys and Compounds,2009,483(1-2):182-185.
[3] SAEED A, ARMAN Z, AKBARI A. The effect of sliding speed and amount of loading on friction and wear behavior of Cu-0.65 wt.%Cr alloy [J]. Journal of Alloys and Compounds,2009,486(1-2):319-324.
[4] KOVÁCIK J, EMMER Š, BIELEK J, et al. Effect of composition on friction coefficient of Cu-graphite composites[J]. Wear,2008,265(3-4):417-421.
[5] GUILLET A, NZOMA E Y, PAREIGE P. A new processing technique for copper-graphite multifilamentary nanocomposite wire:microstructures and electrical properties[J]. Journal of Materials Processing Technology,2007,182(1-3):50-57.
[6] GARCIA-MARQUEZ J M, ANTON N, JIMENEZ A, et al. Viability study and mechanical characterisation of copper-graphite electrical contacts produced by adhesive joining[J]. Journal of Materials Processing Technology,2003,143-144:290-293.
[7] YASAR I, CANAKCI A, ARSLAN F. The effect of brush spring pressure on the wear behavior of copper-graphite brushes with electrical current[J]. Tribology International,2007,40(9):1381-1386.
[8] MESGARNEJAD A, KHONSARI M M. On the tribological behavior of MoS2-coated thrust ball bearings operating under oscillating montion[J]. Wear,2010,269(7-8):547-556.
[9] NAFUMI HIRAOKA. Wear life mechanism of journal bearings with bonded MoS2 film lubricants in air and vacuum[J]. Wear,2001,249(10-11):1014-1020.
[10] REZAEI H, LIU X B, ARDAKANI S J, et al. A study of cold lake vacuum residue hydroconversion in batch and semi-batch reactors using unsupported MoS2 catalysts[J]. Catalysis Today,2010,150(3-4):244-254.
[11] TAGAWA M, YOKOTA K, MATSUMOTO K, et al. Space environmental effects on MoS2 and diamond-like carbon lubricating films: atomic oxygen-induced erosion and its effect on tribological properties[J]. Surface & Coatings Technology,2007,202(4-7):1003-1010.
[12] JAYARAMA G, DORAISWAMYA N, MARKSA L D, et al. Ultrahigh vacuum high resolution transmission electron microscopy of sputter-deposited MoS2 thin films[J]. Surface & Coatings Technology,1994,68-69:439-445.
[13] COLMENARES-ANGULOA J, ZHAO S, YOUNG C, et al. The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings[J]. Surface & Coatings Technology,2009,204(4):423-427.
[14] TARASI F, MEDRAJ M, DOLATABADI A, et al. Structural considerations in plasma spraying of the alumina-zirconia composite[J]. Surface & Coatings Technology,2011,205(23-24):5437-5443.
[15] ZHANG X, VITCHEV R G, LAUWERENS W, et al. Effect of crystallographic orientation on fretting wear behavior of MoS2 coatings in dry and humid air[J]. Thin Solid Films,2001,396(1-2):69-77.
[16] SONG J P,VALEFI M, ROOIJ M D, et al. The effect of an alumina counterface on friction reduction of CuO/3Y-TZP composite at room temperature[J]. Wear,2012,274-275:75-83.
[17] 周庆生. 等离子喷涂技术[M]. 南京:江苏科学技术出版社,1982.18-20.
[18] 易德亮, 冶银平, 刘光, 等. 离子喷涂Al2O3-30%TiO2微米/纳米复合涂层的结构与耐磨性能[J]. 材料工程,2012,(5):24-29. YI De-liang, YE Yin-ping, LIU Guang, et al. Structure and wear properties of plasma sprayed Al2O3-30%TiO2 micro/nano-composite coatings[J]. Journal of Materials Engineering,2012,(5):24-29.
[19] 张志强, 李国禄, 王海斗, 等. 等离子喷涂Fe基合金涂层组织及接触疲劳损伤性能的研究[J]. 材料工程,2012,(6):59-62. ZHANG Zhi-qiang, LI Guo-lu, WANG Hai-dou, et al. Study on the microstructure and property of contact fatigue damage of plasma-sprayed Fe-based alloy coating[J]. Journal of Materials Engineering,2012,(6):59-62.
[20] 栗卓新, 祝弘滨, 李辉, 等. 热喷涂金属陶瓷复合涂层研究进展[J]. 材料工程,2012,(5):93-96. LI Zhuo-xin, ZHU Hong-bin, LI Hui, et al. Progress of thermal spray cermet coatings[J]. Journal of Materials Engineering,2012,(5):93-96.
[21] 齐尚奎, 赵家政, 党鸿辛. MoS2与金属表面摩擦后生成转移膜的研究-Ⅱ. MoS2转移膜与钢摩擦时的化学效应[J]. 固体润滑,1983,3(4):199-204. QI Shang-kui, ZHAO Jia-zheng, DANG Hong-xin.A study of transfer films in the friction of MoS2-metal surfaces II. chemical reaction between steel and rubbed transfer film[J].Journal of Solid Lubrication,1983,3(4):199-204.
[1] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[2] 曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
[3] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[4] 王跃明, 唐求豪, 闫志巧, 王芬. 真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J]. 材料工程, 2018, 46(10): 104-112.
[5] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[6] 王铁钢, 李柏松, 阎兵, 范其香, 刘艳梅, 宫骏, 孙超. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程, 2017, 45(3): 73-79.
[7] 焦春荣, 焦健, 陈大明, 王岭. BSAS喷涂粉体制备工艺及其对涂层性能的影响[J]. 材料工程, 2016, 44(8): 51-57.
[8] 伏春平. 掺杂单层MoS2电子结构的第一性原理计算[J]. 材料工程, 2016, 44(12): 80-83.
[9] 王红星, 谈淑咏, 柳秉毅, 沈彤. 纳米SiC浓度对Ni/纳米MoS2基复合镀层结构和耐磨性能的影响[J]. 材料工程, 2015, 43(10): 60-65.
[10] 杨杰, 安宇龙, 赵晓琴, 陈杰, 周惠娣, 陈建敏. 铝青铜聚酯封严涂层的制备和可磨耗性能评价[J]. 材料工程, 2014, 0(9): 8-13.
[11] 黄亮亮, 孟惠民, 唐静. 纳米结构热障涂层研究进展[J]. 材料工程, 2014, 0(8): 105-114.
[12] 张小锋, 于磊, 杨震晓, 邓春明. 大气等离子喷涂制备低氧含量厚钨涂层[J]. 材料工程, 2014, 0(5): 23-28.
[13] 李国禄, 王海斗, 徐滨士, 马国政, 张森. 空间原子氧辐照对电刷镀Ni/MoS2-C镀层组织结构及摩擦学性能的影响[J]. 材料工程, 2014, 0(2): 24-28.
[14] 张志强, 李国禄, 王海斗, 徐滨士, 朴钟宇. 等离子喷涂Fe基合金涂层组织及接触疲劳损伤性能的研究[J]. 材料工程, 2012, 0(6): 59-62.
[15] 易德亮, 冶银平, 刘光, 尹斌, 周惠娣, 陈建敏. 等离子喷涂Al2O3-30%TiO2微米/纳米复合涂层的结构与耐磨性能[J]. 材料工程, 2012, 0(5): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn