Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (10): 13-19    DOI: 10.3969/j.issn.1001-4381.2013.10.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究
任国成1,2, 赵国群1
1. 山东大学 模具工程技术研究中心, 济南 250061;
2. 山东建筑大学 材料科学与工程学院, 济南 250101
Homogeneous Deformation Analysis and Microstructure Properties Study of AZ31 Magnesium Alloy in Multi-pass Equal Channel Angular Pressing
REN Guo-cheng1,2, ZHAO Guo-qun1
1. Engineering Research Center for Mould and Die Technology, Shandong University, Jinan 250061, China;
2. School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China
全文: PDF(5054 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 等通道转角挤压工艺(Equal Channel Angular Pressing, ECAP)是通过剧烈塑性变形改变微观组织结构生产超细晶粒材料的材料加工方法, 工件变形的均匀性一直是ECAP工艺过程中影响材料性能的主要原因之一。采用空间转换法实现了AZ31镁合金多道次ECAP挤压过程中有限元分析相关场量的准确传递, 完成了四种不同挤压路径ECAP多道次挤压工艺的有限元模拟, 获得了相应挤压件累积等效应变的分布规律。研究确定了经过四道次ECAP挤压以后等效应变累积最为均匀的挤压路径。通过微观组织观察和室温拉伸力学性能实验探讨了不同路径多道次ECAP挤压AZ31镁合金的组织性能变化规律。分析结果表明通过合适的变形路径可以获得细小而均匀的微观组织, 当材料的应变累积均匀时, 其力学性能也较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 等通道转角挤压有限元模拟变形均匀性分析AZ31镁合金    
Abstract:Equal channel angular pressing (ECAP) is an interesting method for changing microstructure and producing ultra fine grained (UFG) materials through super-plastic deformation. The homogeneous deformation is the main factor that influences the material performance during ECAP. Four processing routes are analyzed in detail by using finite element method with spatial switching method through rotating three-dimensional model in multi-pass pressing. The accumulated effective strain distribution of the work-piece processed by ECAP for four pressing routes are obtained respectively through finite element simulation. The processing route that can generate more homogeneous effective's main distribution in sample after four routes processing is defined. The mechanical property of AZ31 magnesium alloy processed by multi ECAP passes in different routes was analyzed through microstructure observation and mechanical tensile test at room temperature. The experimental results show that the fine and uniform microstructure can be acquired by appropriate deformation route, the mechanical property of AZ31 magnesium alloy is greatly improved when strain accumulation uniform after ECAP processing.
Key wordsequal channel angular pressing    finite element simulation    homogeneous deformation analysis    AZ31 magnesium alloy
收稿日期: 2012-09-24      出版日期: 2013-10-20
1:  TG379  
基金资助:教育部"长江学者和创新团队发展计划"创新团队资助项目(IRT0931);山东省自然科学基金(ZR2012EMM014)
通讯作者: 赵国群(1962- ),教授,博士生导师,现从事塑性成形技术及数值模拟研究工作,联系地址:山东济南经十路17923号山东大学材料学院模具技术研究所(250061),E-mail:zhaogq@sdu.edu.cn     E-mail: zhaogq@sdu.edu.cn
作者简介: 任国成(1977- ),男,博士研究生,讲师,现从事塑性成形技术及数值模拟研究工作,联系地址:山东济南经十路17923号山东大学材料学院模具技术中心(250061),E-mail::renguocheng@sdjzu.edu.cn
引用本文:   
任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
REN Guo-cheng, ZHAO Guo-qun. Homogeneous Deformation Analysis and Microstructure Properties Study of AZ31 Magnesium Alloy in Multi-pass Equal Channel Angular Pressing. Journal of Materials Engineering, 2013, 0(10): 13-19.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.10.002      或      http://jme.biam.ac.cn/CN/Y2013/V0/I10/13
[1] HOU L F, WEI Y H, LIU B S, et al.High energy impact techniques application for surface grain refinement in AZ91D magnesium alloy[J].Journal of Materials Science, 2008, 43(13):4658-4665.
[2] LUO A A, MISHRA R K, POWELL B R, et al.Magnesium alloy development for automotive applications[J]. Materials Science Forum, 2012, 706(1):69-82.
[3] 张丁非, 戴庆伟, 胡耀波, 等.镁合金板材轧制成型的研究进展[J].材料工程, 2009, (10):85-90.ZHANG D F, DAI Q W, HU Y B, et al. Progress in the research on rolling formation of magnesium alloy sheet[J]. Journal of Materials Engineering, 2009, (10):85-90.
[4] GLEITER H.Nanostructured materials: basic concepts and microstructure[J].Acta Materialia, 2000, 48(1):1-29.
[5] FIGUEIREDO R B, LANGDON T G.Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing[J].Scripta Materialia, 2009, 61(1):84-87.
[6] MATSUBARA K, MIYAHARA Y, HORITA Z, et al.Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP[J].Acta Materialia, 2003, 51(11):3073-3084.
[7] 何运斌, 潘清林, 刘晓艳, 等.ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J].材料工程, 2011, (6):32-38.HE Y B, PAN Q L, LIU X Y, et al. Microstructure and mechanical properties of ZK60 magnesium alloy produced by equal channel angular pressing[J]. Journal of Materials Engineering, 2011, (6):32-38.
[8] BEYERLEIN I J, TOTH L S.Texture evolution in equal-channel angular extrusion[J].Progress in Materials Science, 2009, 54(4):427-510.
[9] 靳丽, 林栋樑, 毛大立.两步等通道角挤压AZ31镁合金的微观组织和力学性能[J].上海交通大学学报, 2005, 39(11):1175-1179.JIN L, LIN D L, MAO D L, et al. The microstructure and mechanical properties of AZ31 Mg alloy processed by two-step equal channel angular extrusion[J]. Journal of Shanghai Jiaotong University, 2005, 39 (11): 1175-1179.
[10] THAM Y W, FU M W, HNG H H, et al. Study of deformation homogeneity in the multi-pass equal channel angular extrusion process[J]. Journal of Materials Processing Technology, 2007, 192: 121-127.
[11] CERRI E, DE MARCO P P, LEO P. FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: influence of material properties and different process settings on induced plastic strain[J]. Journal of Materials Processing Technology, 2009, 209(3): 1550-1564.
[12] XU S, ZHAO G, LUAN Y, et al. Numerical studies on processing routes and deformation mechanism of multi-pass equal channel angular pressing processes[J]. Journal of Materials Processing Technology, 2006, 176(1): 251-259.
[13] BASAVARAJ V P, CHAKKINGAL U, KUMAR T S P.Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation[J].Journal of Materials Processing Technology, 2009, 209(1):89-95.
[14] KIM W J, HONG S I, KIM Y S, et al.Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J].Acta Materialia, 2003, 51(11):3293-3307.
[15] YAN K, SUN Y S, BAI J, et al.Effects of rotary-die ecap routes on microstructure and mechanical property of AZ31 magnesium alloy[J].Acta Metallurgica Sinica, 2010, 46(1):27-33.
[1] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[2] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[3] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[4] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[5] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[6] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[7] 邓娟利, 赵晓莉, 周传哲, 黎德育, 李宁. AZ31镁合金表面浸锌过程中混合电势与覆盖度关系研究[J]. 材料工程, 2012, 0(9): 19-22,27.
[8] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
[9] 薛文斌, 陈廷芳, 李永良, 邹志锋, 刘晓龙, 赵衍华. AZ31镁合金搅拌摩擦焊接头微弧氧化表面防护研究[J]. 材料工程, 2012, 0(12): 1-6.
[10] 何运斌, 潘清林, 刘晓艳, 李文斌. ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J]. 材料工程, 2011, 0(6): 32-38.
[11] 刘劲松, 王祺, 肖寒, 张士宏. AZ31镁合金型材温热弯曲实验研究[J]. 材料工程, 2011, 0(3): 20-23.
[12] 彭建, 周绸, 陶健全, 潘复生. AZ31与AZ61异种镁合金的TIG焊研究[J]. 材料工程, 2011, 0(2): 46-51.
[13] 胥广亮, 陈国清, 周文龙, 付雪松, 任晓, 孙中刚. 等径角挤压对AZ31镁合金组织及力学性能的影响[J]. 材料工程, 2011, 0(2): 69-72.
[14] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[15] 张丁非, 徐杏杏, 兰伟, 戴庆伟, 齐福刚. AZ31镁合金轧制工艺的研究[J]. 材料工程, 2011, 0(11): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn