Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (10): 20-23    DOI: 10.3969/j.issn.1001-4381.2013.10.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
SBS共混增韧PLA复合材料的制备与性能
杨继年1, 许爱琴2, 程国君1, 于秀华1
1. 安徽理工大学 材料科学与工程学院, 安徽 淮南 232001;
2. 沃利帕森工程技术有限公司 南京分公司, 南京 210019
Fabrication and Properties of PLA Composites Toughened by SBS
YANG Ji-nian1, XU Ai-qin2, CHENG Guo-jun1, YU Xiu-hua1
1. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China;
2. Worley Parsons China Nanjing Office, Nanjing 210019, China
全文: PDF(1710 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用熔融共混与模压成型工艺制备了苯乙烯-丁二烯嵌段共聚物(SBS)共混增韧PLA复合材料, 考察了SBS的添加量对共混体系的微观形貌、力学性能和热性能的影响。结果表明, SBS/PLA复合材料呈现典型的"海-岛"两相结构, SBS粒子在基体中分散均匀且与PLA间具有较好的界面结合;随着SBS质量分数的增加, SBS/PLA复合材料的抗拉强度和弹性模量均下降, 而断裂伸长率和冲击韧性呈持续上升的变化趋势;SBS的引入使PLA的热分解温度向高温区偏移, 显著改善了SBS/PLA复合材料的热稳定性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨继年
许爱琴
程国君
于秀华
关键词 聚乳酸苯乙烯-丁二烯嵌段共聚物增韧热稳定性    
Abstract:The composites of poly (lactic acid) (PLA) toughened by styrene-butadiene block copolymer (SBS) were prepared via molten blending and compression molding. The effects of SBS contents were investigated on the morphologies, mechanical and thermal properties of composites. The results show that typical droplet-matrix morphologies of SBS/PLA composites were observed with well dispersed SBS particles in matrix and fine interfacial adhesion between SBS and PLA. The tensile strength and elastic modulus were decreased, however, the elongation at break and impact toughness of SBS/PLA composites were constantly increased with increasing SBS mass fraction within the range of research. The heat stability of SBS/PLA composites was greatly improved by the introduction of SBS with the evidence of thermo-decomposing temperature shifting to high temperature zone obviously.
Key wordspoly (lactic acid)    styrene-butadiene block copolymer    toughening    thermal stability
收稿日期: 2012-09-25      出版日期: 2013-10-20
中图分类号:  TQ323.9  
基金资助:安徽高校省级自然科学研究项目(KJ2013Z067);安徽理工大学博士启动基金(2010-11060)
作者简介: 杨继年(1981- ),男,讲师,博士,研究方向是聚合物基复合材料/泡沫材料,联系地址:安徽淮南市安徽理工大学材料科学与工程学院(232001),E-mail:yangjinian@163.com
引用本文:   
杨继年, 许爱琴, 程国君, 于秀华. SBS共混增韧PLA复合材料的制备与性能[J]. 材料工程, 2013, 0(10): 20-23.
YANG Ji-nian, XU Ai-qin, CHENG Guo-jun, YU Xiu-hua. Fabrication and Properties of PLA Composites Toughened by SBS. Journal of Materials Engineering, 2013, 0(10): 20-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.10.003      或      http://jme.biam.ac.cn/CN/Y2013/V0/I10/20
[1] NAMPOOTHIRI K M, NAIR N R, JOHN R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology, 2010, 101(22): 8493-8501.
[2] ANDERSON K S, SCHRECK K M, HILLMYER M A. Toughening polylactide[J]. Polymer Review, 2008, 48(1): 85-108.
[3] 强涛, 于德梅. 聚乳酸增韧研究进展[J]. 高分子材料科学与工程, 2010, 26(9): 167-170.QIANG T, YU D M. Progress in toughening of PLA[J]. Polymer Materials Science and Engineering, 2010, 26(9): 167-170.
[4] 车晶, 秦凡, 杨荣杰. 聚乳酸/蒙脱土纳米复合材料的原位聚合及表征[J]. 材料工程, 2011, (1): 28-33.CHE J, QIN F, YANG R J. Polylactide/montmorillonite nanocomposites in-situ polymerization and characterization[J]. Journal of Materials Engineering, 2011, (1): 28-33.
[5] HASHIMA K, NISHITSUJI S, INOUE T. Structure-properties of super-tough PLA alloy with excellent heat resistance[J]. Polymer, 2010, 51(17): 3934-3939.
[6] OYAMA H T. Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer[J]. Polymer, 2009, 50(3): 747-751.
[7] LI Y J, SHIMIZU H. Improvement in toughness of poly (L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): morphology and properties[J]. European Polymer Journal, 2009, 45(3): 738-746.
[8] ANDERSON K S, HILLMYER M A. The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends[J]. Polymer, 45(26): 8809-8823.
[9] 冯玉林, 殷敬华, 姜摇伟, 等. 环氧基团功能化弹性体增韧聚乳酸的性能[J]. 高等学校化学学报, 2012, 33(2): 400-403.FENG Y L, YIN J H, JIANG Y W, et al. Properties of poly(lactic acid) toughened by epoxy-functionalized elastomer[J]. Chemical Journal of Chinese Universities, 2012, 33(2): 400-403.
[10] SU Z Z, LI Q Y, LIU Y J, et al. Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane)[J]. European Polymer Journal, 2009, 45(8): 2428-2433.
[11] SHI Q F, CHEN C, GAO L, et al. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE[J]. Polymer Degradation and Stability, 2011, 96(1): 175-182.
[12] 张留进, 陈广义, 魏志勇, 等. 不同增容剂对POE增韧聚乳酸性能的影响[J]. 高分子材料科学与工程, 2012, 28(6): 57-60. ZHANG L J, CHEN G Y, WEI Z Y, et al. Effect of different compatibilizers on the property of PLA/POE composites[J]. Polymer Materials Science and Engineering, 2012, 28(6): 57-60.
[13] HERNADEZ M, SANTANA O O, ICHAZO M N, et al. Fracture behavior at low strain rate of dynamically and statically vulcanized polypropylene/styrene-butadiene-styrene block copolymer blends[J]. Polymer Testing, 2008, 27(7): 881-885.
[14] PRZYBYTNIAK G K, ZAGORSKI Z P, ZUCHOWSKA D. Free radicals in electron beam irradiated blends of polyethylene and butadiene-styrene block copolymer[J]. Radiation Physics and Chemistry, 1999, 55(5-6): 655-658.
[15] AL-SALEH M H, SUNDARARAJ U. Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene-butadiene-styrene copolymer: influence of morphology on electrical resistivity[J]. European Polymer Journal, 2008, 44(7): 1931-1939.
[16] FU Q, WANG G H. Polyethylene toughened by rigid inorganic particles[J]. Polymer Engineering and Science, 1992, 32(2): 94-97.
[1] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[2] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[3] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[4] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[5] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[6] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[7] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[8] 乔海涛, 梁滨, 张军营, 刘清方, 陆松, 赵升龙, 张瑞秀. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12): 38-47.
[9] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[10] 李春燕, 尹金锋, 王铮, 寇生中, 赵燕春. Er对ZrCuNiAl非晶合金结构、力学性能、热稳定性及非晶形成能力的影响[J]. 材料工程, 2018, 46(1): 1-7.
[11] 李娜, 马兆昆, 陈铭, 宋怀河, 李昂, 贾月荣. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45(9): 31-37.
[12] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[13] 沈学霖, 朱光明, 杨鹏飞. 生物医用形状记忆高分子材料[J]. 材料工程, 2017, 45(7): 111-117.
[14] 杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
[15] 李洪峰, 王德志, 曲春艳, 顾继友, 冯浩, 杨海冬, 肖万宝. 高性能双马树脂底胶的性能[J]. 材料工程, 2016, 44(6): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn