Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (10): 57-63,70    DOI: 10.3969/j.issn.1001-4381.2013.10.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
线能量对挤压AZ91D镁合金GTAW焊接接头组织与性能的影响
游国强1,2, 王向杰1, 齐冬亮1, 郭强1, 龙思远1,2
1. 重庆大学 材料科学与工程学院, 重庆 400045;
2. 重庆大学 国家镁合金材料工程技术研究中心, 重庆 400044
Effect of Line Energy on the Microstructure and Properties of GTAW Welded Hot Extruded AZ91D Magnesium Alloy Joints
YOU Guo-qiang1,2, WANG Xiang-jie1, QI Dong-liang1, GUO Qiang1, LONG Si-yuan1,2
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China;
2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
全文: PDF(4283 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过显微组织观察、晶粒尺寸定量分析、显微硬度测试和拉伸实验等手段, 系统研究了线能量变化对热挤压AZ91D镁合金钨极氩弧焊接接头微观组织、显微硬度和极限抗拉强度的影响。结果表明: 线能量过低时, 焊缝易出现未焊透和气孔缺陷, 随着线能量的增加, 熔合区和热影响区的晶粒尺寸均增大。线能量的增加导致热影响区和熔合区中的低熔共晶产物由连续状向颗粒状转变。适当的增加线能量有助于提高焊接接头平均显微硬度和极限抗拉强度, 但过高的线能量会导致焊接接头的平均显微硬度和极限抗拉强度下降。这是因为当线能量增大到一定程度时, 晶粒尺寸(霍尔-佩奇效应)、锌元素蒸发和过时效对金属材料强度产生的作用大于弥散强化(奥罗万强化机理)对材料强度产生的影响, 霍尔-佩奇效应对材料性能的影响占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游国强
王向杰
齐冬亮
郭强
龙思远
关键词 AZ91D镁合金钨极氩弧焊显微组织极限抗拉强度    
Abstract:The influence of line energy on the microstructures, microhardness and ultimate tensile strength (UTS) of gas tungsten arc welded (GTAW) hot extruded AZ91D magnesium alloy plates were investigated by microstructural observations, quantitative analysis of grain size, microhardness tests and tensile tests. The results show that the weld prone to emerge defects such as incomplete penetration and porosity if the line energy is too low, and the grains both in the fusion zone (FZ) and the heat-affected zone (HAZ) increased with an increase of the line energy. Moreover, an increase of the line energy result in transition of low melting eutectic products from continuous shape to particulate shape in both the FZ and the HAZ. The microhardness and ultimate tensile strength (UTS) of the welded joint increased with an increase of the heat input, however, an over high line energy results in a decrease both for the microhardness and the ultimate tensile strength of the welded joint. When the line energy increases to a certain amount, the effects of grain size (Hall-Page effect), evaporation of zinc and over aging on the properties of metallic materials are greater than that of dispersion strengthened (Orowan strengthening mechanism), and the H-P effect is of the dominant on the material properties.
Key wordsAZ91D magnesium alloy    gas tungsten arc welded    microstructure    ultimate tensile strength
收稿日期: 2012-05-21      出版日期: 2013-10-20
中图分类号:  TG146.7  
基金资助:国家自然科学青年基金(51105393);中央高校基本科研业务费项目(CDJXS11132226);重庆市科技攻关项目(CSTC2010AA4045);重庆大学大型仪器设备资助项目(2011121563)
作者简介: 游国强(1978- ),男,博士,副教授,从事轻金属成型技术的研究,联系地址:重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院材料成型系(400045),E-mail:ygq@cqu.edu.cn
引用本文:   
游国强, 王向杰, 齐冬亮, 郭强, 龙思远. 线能量对挤压AZ91D镁合金GTAW焊接接头组织与性能的影响[J]. 材料工程, 2013, 0(10): 57-63,70.
YOU Guo-qiang, WANG Xiang-jie, QI Dong-liang, GUO Qiang, LONG Si-yuan. Effect of Line Energy on the Microstructure and Properties of GTAW Welded Hot Extruded AZ91D Magnesium Alloy Joints. Journal of Materials Engineering, 2013, 0(10): 57-63,70.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.10.010      或      http://jme.biam.ac.cn/CN/Y2013/V0/I10/57
[1] WESRENGEN H. Magnesium die casting: from ingots to automotive parts[J].Light Metal Age, 2000, 58(3-4): 44-53.
[2] KULEKCI M K. Magnesium and its alloys applications in automotive industry[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(9-10):851-865.
[3] 潘际銮. 镁合金结构及焊接[J].电焊机, 2005, 35(9):1-7. PAN Ji-luan. Structure of magnesium alloy and welding[J]. Electric Welding Machine, 2005, 35(9):1-7.
[4] MORDIKE B L, EBERT T. Magnesium: properties-applications-potential[J].Materials Science and Engineering: A, 2000, 302(1): 37-45.
[5] MUNITZ A, COTLER C, STERN A, et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J].Materials Science and Engineering: A, 2001, 302(1): 68-73.
[6] ZHU T, CHEN Z W, GAO W. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy[J]. Materials Characterization, 2008, 59(11): 1550-1558.
[7] LIU P, LI Y, GENG H, et al. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials[J]. Materials Letters, 2007, 61(6): 1288-1291.
[8] BAESLACK W A, SAVAGE S J, FROES F H. Laser-weld heat-affected zone liquation and cracking in a high-strength Mg-based alloy[J]. Journal of Materials Science Letters, 1986, 5(9): 935-939.
[9] XU N, SHEN J, XIE W D, et al. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates[J]. Materials Characterization, 2010, 61(7): 713-719.
[10] LI Y J. Performance and Quality Control of the Welding[M].Beijing:Chemical Industry Press, 2005.
[11] LIANG G, YUAN S. Study on the temperature measurement of AZ31B magnesium alloy in gas tungsten arc welding[J]. Materials Letters, 2008, 62(15): 2282-2284.
[12] CAO X, JAHAZI M. Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy[J]. Materials & Design, 2009, 30(6): 2033-2042.
[13] SHEN J, YOU G Q, LONG S Y, et al. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy[J]. Materials Characterization, 2008, 59(8): 1059-1065.
[14] MIN D, SHEN J, LAI S Q, et al. Effects of heat input on the low power Nd: YAG pulse laser conduction weldability of magnesium alloy AZ61[J]. Optics and Lasers in Engineering, 2011, 49(1): 89-96.
[15] DULY D, SIMON, J P, BRECHET Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys[J].Acta Metallurgica et Materialia, 1995, 43(1): 101-106.
[16] HAN B Q, DUNAND D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids[J]. Materials Science and Engineering: A, 2000, 277(1-2): 297-304.
[17] HEILMAIER M, SAAGE H, MIRPURI KJ, et al. Superposition of grain size and dispersion strengthening in ODS Li2(Al, Cr)3Ti[J]. Materials Science and Engineering: A, 2002, (329-331): 106-111.
[18] ZHANG Z, CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia, 2006, 54(7): 1321-1326.
[19] PEKGÜLERYÜZ M Ö, AVEDESIAN M M. Magnesium alloying, some potentials for alloy development[J]. Inst Magnesium Technology, Metals, Journal, 1992, 42(12):679-686.
[20] GARBOGGINI A, MCSHANE H B. Effect of Zn and Si additions on structure and properties of rapidly solidified Mg-Al alloys[J]. Materials Science & Technology, 1994, 10(9): 763-770.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[4] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[5] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[6] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[7] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[8] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[9] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[10] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[11] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[12] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[13] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[14] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[15] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn