Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (11): 12-19,25    DOI: 10.3969/j.issn.1001-4381.2013.11.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征
袁有录1,2, 李铸国2
1. 1湖北汽车工业学院 材料科学与工程学院, 湖北 十堰 442002;
2. 上海交通大学 材料科学与工程学院, 上海 200240
Dissolving and Precipitating Characteristics of WC and Carbides in the Ni60A+WC Graded Coating
YUAN You-lu1,2, LI Zhu-guo2
1. School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, Hubei, China;
2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(6012 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用等离子熔覆工艺制备了多层Ni60A+WC增强Fe基梯度涂层,增强相Ni60A+WC比例按10%(质量分数)逐层递增,研究了梯度涂层中WC颗粒的溶解及碳化物析出。结果表明:等离子熔覆加热阶段梯度涂层各层中WC颗粒均发生溶解,溶解的特征与WC大小及其内部缺陷有关,据此可将WC的溶解分为扩散式、芯部溶解式、溃散式、及扩散-芯部溶解复合式四种类型;在等离子熔覆凝固阶段,各层均析出富W型碳化物,析出位置及形貌与Ni60A+WC在每层的熔覆量有关,随着熔覆量的增加,富W型碳化物的析出特征依次为沿晶界呈网状→颗粒状→颗粒状+块状→小块状+簇团状→大块状+等轴状析出。析出的碳化物随着Ni60A+WC熔覆量的增加而增加且在各层中分布较均匀,测得梯度涂层的宏观硬度随着层数的增加呈线性递增分布。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁有录
李铸国
关键词 等离子熔覆梯度涂层WC溶解碳化物析出    
Abstract:The dissolution and precipitation of WC in the multilayered Ni60A+WC reinforced Fe-based graded coating fabricated by Plasma cladding were studied, in which the content of Ni60A+WC increased by 10%mass fraction layer by layer. The results show that the dissolution of WC in each layer of the graded coating during the plasma cladding heating stage was closely related to the particle size and inner defect. The dissolution characteristics of WC are classified into four types: diffusing, core dissolution, crumbling, and diffusing complex core-dissolution. The shape characteristics of the precipitated W-rich carbides in the graded coating during the solidification process are relevant to the contents of Ni60A+WC. With the increasing of the contents for the Ni60A+WC from 10% to 50%, the shapes of W-rich carbides are transferred from reticulation, grain, grain mixed with block, block mixed with cluster to big block mixed with equiaxial structures, and the quantity of the precipitated W-rich carbides increased layer by layer. As a result, the hardness of the graded coating linearly increases gradually.
Key wordsplasma cladding    graded coating    WC dissolution    carbide precipitation
收稿日期: 2012-06-29      出版日期: 2013-11-20
中图分类号:  TG174.442  
基金资助:国家自然科学基金(51171116);科技部国际科技合作基金(2009DFB50350);湖北省教育厅科学技术研究项目(Q20122304)及博士科研基金(BK201205)
作者简介: 袁有录(1976—),男,讲师,博士研究生,从事金属材料表面强化研究,联系地址:湖北汽车工业学院材料学院(442002),E-mail:botar@163.com
引用本文:   
袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征[J]. 材料工程, 2013, 0(11): 12-19,25.
YUAN You-lu, LI Zhu-guo. Dissolving and Precipitating Characteristics of WC and Carbides in the Ni60A+WC Graded Coating. Journal of Materials Engineering, 2013, 0(11): 12-19,25.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.11.003      或      http://jme.biam.ac.cn/CN/Y2013/V0/I11/12
[1] NAM H, LIM J, KANG S. Microstructure of (W,Ti)C-Co system containing platelet WC[J]. Materials Science and Engineering A, 2010, 527(27-28): 7163-7167.
[2] KATSICH C, BADISCH E. Effect of carbide degradation in a Ni-based hardfacing under abrasive and combined impact/abrasive conditions[J]. Surface & Coatings Technology, 2011, 206(6): 1062-1068.
[3] JONES M, WAAG U. The influence of carbide dissolution on the erosion-corrosion properties of cast tungsten carbide/Ni-based PTAW overlays[J]. Wear, 2011, 271(9-10): 1314-1324.
[4] LIU Ai-guo, GUO Mian-huan, HU Hai-long. Distribution and dissolution of WC particles in surface metal matrix composites produced by plasma melt injection[J]. Surface Engineering, 2010, 26(8): 623-628.
[5] 戎磊,黄坚,李铸国,等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能[J]. 中国表面工程, 2010, 23(6):40-44,50.RONG Lei, HUANG Jian, LI Zhu-guo, et al. Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles[J]. China Surface Engineering, 2010, 23(6): 40-44,50.
[6] PRZYBY?OWICZ J, KUSINSKI J. Structure of laser cladded tungsten carbide composite coatings[J]. Journal of Materials Processing Technology, 2001, 109(1-2): 154-160.
[7] 游兴河. WC在WC/50CrMo钢复合材料中的溶解行为[J]. 复合材料学报, 1994, 11(1): 29-35.YOU Xing-he. Dissolving behaviour of WC/Steel composite material[J]. Acta Materiae Compositae Sinica, 1994, 11(1): 29-35.
[8] 尤显卿,马建国,宋雪峰,等. 电冶熔铸WC/钢复合材料中WC的溶解行为[J]. 中国有色金属学报, 2005, 15(9): 1363-1368.YOU Xian-qing, MA Jian-guo, SONG Xue-feng, et al. Dissolution behavior of WC particle in WC steel matrix composites by electroslag melting and casting method[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(9):1363-1368.
[9] 李福泉,魏连峰,李俐群,等. 激光-TIG复合熔注制备WCp/Al复合材料层的微观组织[J]. 中国有色金属学报, 2009, 19(4): 619-624.
LI Fu-quan, WEI Lian-feng, LI Li-quan, et al. Microstructures of WCp/Al metal matrix composites layer produced by hybrid laser-TIG melt injection[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(4): 619-624.
[10] BABU S, DAVID S, MARTUKANITZ R, PARKS K. Toward prediction of microstructural evolution during laser surface alloying[J]. Metallurgical and Materials Transactions A, 2002, 33(4): 1189-1200.
[11] 曾晓雁,吴新伟,陶曾毅,等. 激光熔覆铸造WC-Ni基合金中WC颗粒的烧损机理与评估[J]. 金属学报, 1997, 33(8): 863-868. ZENG Xiao-yan, WU Xin-wei, TAO Zeng-yi, et al. Heat damage mechanisms and evaluation method of WC particles in laser clad WC-Ni composite coating[J]. Acta Metallurgica Sinica, 1997, 33(8): 863-868.
[12] ZHOU Sheng-feng, DAI Xiao-qin. Microstructure evolution of Fe-Based WC composite coating prepared by laser induction hybrid rapid cladding[J]. Applied Surface Science, 2010, 256(24): 7395-7399.
[13] 周圣丰,曾晓雁. 激光感应复合快速熔覆Fe基WC涂层的显微组织特征[J]. 中国激光, 2010, 37(4): 1143-1146. ZHOU Sheng-feng, ZENG Xiao-yan. Microstructure characteristics of Fe-based WC composite coatings prepared by laser induction hybrid rapid cladding[J]. Chinese Journal of Lasers, 2010, 37(4): 1143-1146.
[14] GUSTAFSON P. A thermodynamic evaluation of the C-Cr-Fe-W system[J]. Metallurgical and Materials Transactions A, 1988, 19(10): 2547-2554.
[15] 武晓雷,陈光南. 激光熔覆Fe-Cr-W-Ni-C合金的微观组织及其演化[J]. 金属学报, 1998, 34(10): 1033-1038. WU Xiao-lei, CHEN Guang-nan. Microstructrual characterization and evolution of laser clad Fe-based alloys[J]. Acta Metallurgica Sinica, 1998, 34(10):1033-1038.
[1] 王智慧, 赵雪飞, 贺定勇, 蒋建敏, 赵秋颖, 刘飞. 等离子熔覆含亚微米碳化铌铁基耐磨合金组织与性能的研究[J]. 材料工程, 2015, 43(7): 73-79.
[2] 龚伟, 周黎明, 王恩泽, 白朝中. Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层接触应力的数值模拟[J]. 材料工程, 2014, 0(9): 20-25.
[3] 刘世敏, 周宇. 钛合金表面生物活性涂层的发展历程及趋势研究[J]. 材料工程, 2009, 0(7): 88-92.
[4] 林东洋, 赵玉涛, 甘俊旗, 程晓农, 戴起勋. 钛合金表面磁控溅射制备HA/YSZ梯度涂层[J]. 材料工程, 2008, 0(5): 34-38.
[5] 刘旭, 宋尽霞, 李树索, 韩雅芳. NiCoCrAlY(Si)梯度涂层对Ni3Al基单晶合金IC6SX抗氧化性能的影响[J]. 材料工程, 2008, 0(5): 52-56.
[6] 王远坤, 程长征, 胡宗军, 牛忠荣. 边界元法分析功能梯度涂层材料[J]. 材料工程, 2008, 0(4): 61-64.
[7] 刘胜林, 孙冬柏, 樊自拴, 王国刚, 俞宏英, 孟惠民. 等离子熔覆铁基涂层的组织及冲蚀磨损研究[J]. 材料工程, 2006, 0(12): 35-39.
[8] 黄小婷, 王富耻, 马壮, 王全胜. 碳纤维增强聚酰亚胺复合材料表面梯度涂层制备与组织性能研究[J]. 材料工程, 2005, 0(5): 7-10.
[9] 张景德, 尹衍升, 张虹, 李静. Fe3Al-Al2O3陶瓷梯度涂层性能研究[J]. 材料工程, 2003, 0(4): 6-9.
[10] 马壮, 王全胜, 王富耻, 吕广庶. 涂层基体条件对梯度涂层残余应力影响研究[J]. 材料工程, 2002, 0(4): 15-18,37.
[11] 马壮, 吕广庶, 王富耻, 王全胜. 等离子喷涂沉积率对梯度涂层结合强度影响研究[J]. 材料工程, 2001, 0(5): 34-36.
[12] 黄维刚. 去应力退火对等离子喷涂ZrO2-NiCoCrAlY热障涂层热震性能的影响[J]. 材料工程, 2001, 0(10): 25-26,34.
[13] 卢国辉, 曾鹏, 黄惠平, 王桂棠, 谢光荣, 潘振鹏, 胡社军. 爆炸喷涂Al2O3陶瓷梯度涂层的组织与性能[J]. 材料工程, 2000, 0(4): 30-33.
[14] 韩杰才, 董世运, 张幸红, 杜善义. 金属/陶瓷梯度涂层工艺现状[J]. 材料工程, 1998, 0(12): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn