Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (11): 70-74    DOI: 10.3969/j.issn.1001-4381.2013.11.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
基于应力波因子的金属材料表面塑性损伤检测
税国双, 黄蓬
北京交通大学 土木建筑工程学院, 北京 100044
Nondestructive Evaluation of Surface Plastic Damage for Metallic Material Based on Stress Wave Factor
SHUI Guo-shuang, HUANG Peng
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
全文: PDF(1579 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 提出了一种基于应力波因子的金属材料表面塑性损伤检测方法。将AZ31镁铝合金试件加载到不同的拉伸载荷后,利用Ritec SNAP非线性超声测试系统激发和接收Rayleigh表面波,通过实验测试在不同载荷作用后基于应力波因子的声学非线性系数与应力的关系。研究结果表明,当加载应力接近材料的屈服极限时,基于应力波因子的声学非线性系数随着应力的增加明显增大,因此可以利用基于应力波因子的声学非线性系数对金属材料表面的塑性损伤进行非线性超声无损评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
税国双
黄蓬
关键词 表面塑性损伤应力波因子非线性超声非线性系数    
Abstract:A method for nonlinear ultrasonic evaluation of surface damage for metallic material is presented. Rayleigh waves are excited and acquired with Ritec SNAP nonlinear ultrasonic measurement system, the FSW-based acoustic nonlinearity parameters (FSW ANPs) are thus measured at different stress levels for AZ31 magnesium alloy plate specimens. The results show that there is a significant increase in the acoustic nonlinearity parameters with monotonic tensile loads when the stress is close to the yielding stress. The research suggests an effective nondestructive evaluation method to track the mechanical property for the surface of metallic material in a nonlinear ultrasonic way using stress wave factor.
Key wordssurface plastic damage    stress wave factor (FSW)    nonlinear ultrasonic    nonlinearity parameter
收稿日期: 2012-05-08      出版日期: 2013-11-20
中图分类号:  O426.2  
基金资助:国家自然科学基金项目(11172034);中央高校基本科研业务费支持项目(2011JBM263)
作者简介: 税国双(1971—),男,博士,副教授,研究方向为固体中的波传播理论及应用,非线性超声检测,联系地址:北京交通大学土建学院(100044),E-mail:gsshui@bjtu.edu.cn
引用本文:   
税国双, 黄蓬. 基于应力波因子的金属材料表面塑性损伤检测[J]. 材料工程, 2013, 0(11): 70-74.
SHUI Guo-shuang, HUANG Peng. Nondestructive Evaluation of Surface Plastic Damage for Metallic Material Based on Stress Wave Factor. Journal of Materials Engineering, 2013, 0(11): 70-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.11.012      或      http://jme.biam.ac.cn/CN/Y2013/V0/I11/70
[1] 何方成,王铮,史丽军. 复合材料制件拐角部位超声检测技术[J]. 材料工程, 2011,(7): 80-84.HE Fang-cheng, WANG Zheng,SHI Li-jun. Ultrasonic testing technique for the inspection of defects in the corner of composites[J]. Journal of Materials Engineering, 2011,(7): 80-84.
[2] 税国双,汪越胜,曲建民. 材料力学性能退化的超声无损检测与评价[J]. 力学进展, 2005,(1): 52-68.SHUI Guo-shuang, WANG Yue-sheng, QU Jian-min. Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound[J]. Advances in Mechanics, 2005(1): 52-68.
[3] 邓明晰,PRICE D C,SCOTT D A. 兰姆波非线性效应的实验观察[J]. 声学学报, 2005,(1): 37-46.DENG Ming-xi, PRICE D C,SCOTT D A. Experimental observations of nonlinear effects of Lamb waves[J]. Acta Acustica, 2005,(1): 37-46.
[4] NAGY P B. Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics, 1998, 36(1-5): 375-381.
[5] CANTRELL J H, YOST W T. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue, 2001,(23): 487-490.
[6] SHUI G S, KIM J Y, QU J, et al. A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves[J]. NDT & E International, 2008, 41(5): 326-329.
[7] 吴斌,颜丙生,何存富,等. AZ31镁合金早期力学性能退化非线性超声检测[J]. 航空材料学报, 2011, 31(1): 87-92.WU Bin, YAN Bing-sheng, HE Cun-fu, et al. AZ31 magnesium early mechanical performance degradation nondestructive testing using nonlinear ultrasonic[J]. Journal of Aeronautical Materials, 2011, 31(1): 87-92.
[8] PRUELL C, KIM J Y, QU J, et al. A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate[J]. NDT & E International, 2009, 42(3): 199-203.
[9] BABY S, NAGARAJA K B, OMPRAKASH C M, et al. Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique[J]. Scripta Materialia, 2008, 59(8): 818-821.
[10] KIM J Y, JACOBS L J, QU J, et al. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves[J]. Journal of the Acoustical Society of America, 2006, 120,(3): 1266-1273.
[11] LIU M H, KIM J Y, JACOBS L, et al. Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates-feasibility of measuring residual stress[J]. NDT & E International, 2011, 44(1): 67-74.
[12] 邓明晰. 复合结构界面粘接强度的声-超声评价研究[J]. 应用声学, 2005, 24(5): 292-299. DENG Ming-xi. Nondestructive evaluation of adhesive strength of composite structures using an acousto-ultrasonic approach[J]. Applied Acoustics, 2005, 24(5): 292-299.
[13] 张谦琳,胡建恺. 复合材料的超声检测新技术Ⅰ. 声-超声技术[J]. 应用声学, 1995,14(4): 38-42. ZHANG Qian-lin,HU Jian-kai. New techniques of ultrasonic testing on composite materials I. The acousto-ultrasonic technique [J]. Applied Acoustics, 1995,14(4): 38-42.
[1] 侯天宇, 李萍, 陈雷, 赵杰, 李廷举. 304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征[J]. 材料工程, 2017, 45(10): 132-137.
[2] 秦鹏, 李萍, 侯天宇, 赵杰, 李廷举. 非线性超声检测的因素探讨及其在HR3C烟侧腐蚀的应用[J]. 材料工程, 2016, 44(11): 88-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn