Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (12): 19-26    DOI: 10.3969/j.issn.1001-4381.2013.12.004
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
Ti-5Mo-5V-1Cr-3Al合金的热压缩变形行为研究
崔雪飞1, 米绪军2, 林晨光1, 惠松晓2, 魏衍广1, 陶海明1
1. 北京有色金属研究总院 粉末冶金及特种材料研究所, 北京 100088;
2. 北京有色金属研究总院 有色金属材料制备加工国家重点实验室, 北京 100088
Research on Hot Compressive Behavior of Ti-5Mo-5V-1Cr-3Al Alloy
CUI Xue-fei1, MI Xu-jun2, LIN Chen-guang1, HUI Song-xiao2, WEI Yan-guang1, TAO Hai-ming1
1. Powder Metallurgy and Special Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. State Key Laboratory for Fabrication & Processing of Non-ferrous Metals, General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(3129 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用恒应变速率热压缩模拟实验,对Ti-5Mo-5V-1Cr-3Al(简称1Cr)钛合金在应变速率0.001~1s-1、变形温度700~900℃条件下进行研究。结果表明:该材料的流变应力对温度与应变速率敏感:当变形温度为700~800℃时,真应力-真应变曲线呈现动态再结晶单曲线特征;当变形温度为800~900℃时,低应变速率(0.001s-1)的真应力-真应变曲线呈现动态再结晶多应力峰值曲线特征,高应变速率(0.01~1s-1)的真应力-真应变曲线呈现动态回复曲线特征。1Cr合金在等温压缩变形时的流变行为可用包含Zener-Holomon参数的Arrhenius本构方程描述,变形激活能为456kJ/mol。金相结果显示,材料在热压缩过程中的动态行为除了与变形速率、变形温度等加工参数相关外,也与相应温度、变形速率下材料的组织及相结构有关。合金在低应变速率0.001s-1下热压缩变形时,在接近相变点或以上(800~900℃)温度范围内仍呈现动态再结晶行为,这与材料在此阶段发生的应变诱发马氏体转变密切相关,马氏体相的析出促使材料在热变形时趋向于发生动态再结晶行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔雪飞
米绪军
林晨光
惠松晓
魏衍广
陶海明
关键词 Ti-5Mo-5V-1Cr-3Al合金等温压缩流变应力应变诱发马氏体    
Abstract:Isothermal compression test was carried out for Ti-5Mo-5V-1Cr-3Al (abbreviated as 1Cr) alloy in the temperature range of 700-900℃ and in the strain rate range of 0.001-1s-1. The results show that the flow stress is sensitive to the deformation temperature and the strain rate. Dynamic recrystallization occurs in the temperature range of 700-800℃. In the temperature range of 800-900℃, multi-peaks stress dynamic recrystallization exhibits in the low strain rate of 0.001s-1 and dynamic recovery exhibits in the strain rate range of 0.01-1s-1. The flow stress behaviors of Ti-5Mo-5V-1Cr-3Al alloy during the isothermal compression could be expressed by the Arrhenius constitutive equation including Zener-Holomon parameters. The hot deformation activation energy is 456kJ/mol. The metallographic results indicate that the dynamic behavior of the material in hot compression process is affected by not only the rate and the temperature of the deformation, but also the microstructure and phase structure of the material. During hot compression deformation under a low strain rate of 0.001s-1, the alloy presents the dynamic recrystallization behavior even near the phase transition point or the higher temperature (800-900℃), which is closely related to the martensitic transformation induced by the strain. The precipitation of the martensite promotes dynamic recrystallization behavior during the hot deformation.
Key wordsTi-5Mo-5V-1Cr-3Al alloy    isothermal compression    flow stress    strain-induced martensitic
收稿日期: 2013-02-26      出版日期: 2013-12-20
中图分类号:  TG146.2+3  
基金资助:国家国际科技合作专项项目资助(2012DFG51540)
作者简介: 崔雪飞(1977- ),男,博士研究生,主要从事高强韧钛合金的研究工作,联系地址:北京市新外大街2号北京有色金属研究总院粉末所(100088),E-mail:cxf200503@sohu.com
引用本文:   
崔雪飞, 米绪军, 林晨光, 惠松晓, 魏衍广, 陶海明. Ti-5Mo-5V-1Cr-3Al合金的热压缩变形行为研究[J]. 材料工程, 2013, 0(12): 19-26.
CUI Xue-fei, MI Xu-jun, LIN Chen-guang, HUI Song-xiao, WEI Yan-guang, TAO Hai-ming. Research on Hot Compressive Behavior of Ti-5Mo-5V-1Cr-3Al Alloy. Journal of Materials Engineering, 2013, 0(12): 19-26.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.12.004      或      http://jme.biam.ac.cn/CN/Y2013/V0/I12/19
[1] WEISS I, SEMIATIN S L.Thermomechanical processing of beta titanium alloys-an overview[J].Materials Science and Engineering:A, 1998, 243(1-2):46-65.
[2] BOYER R R.An over view on use of titanium in aerospace industry[J].Materials Science and Engineering:A, 1996, 213(1-2):103-114.
[3] 赵永庆, 奚正平, 曲恒磊. 我国航空用钛合金材料研究现状[J].航空材料学报, 2003, 23(增刊1):215-219.ZHAO Yong-qing, XI Zheng-ping, QU Heng-lei. Current situation of titanium alloy materials used for national aviation[J]. Journal of Aeronautical Materials, 2003, 23(S1):215-219.
[4] 付艳艳, 宋月清, 惠松骁, 等.航空用钛合金的研究与应用进展[J].稀有金属, 2006, 30(6):850-856. FU Yan-yan, SONG Yue-qing, HUI Song-xiao, et al. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6):850-856.
[5] 张翥, 惠松骁, 刘伟.高强高韧TBl0钛合金棒材研究[J].稀有金属, 2006, 30(2):221-225.ZHANG Zhu, HUI Song-xiao, LIU Wei. High strength and high toughness TB10 titanium alloy bars[J]. Chinese Journal of Rare Metals, 2006, 30(2):221-225.
[6] 毛柏平, 郭胜利, 沈健. Ti-25523钛合金热变形流变行为的研究[J]. 稀有金属, 2008, 32(5):674-678.MAO Bai-ping, GUO Sheng-li, SHEN Jian. Study on hot deformation behavior of Ti-25523 titanium alloy[J]. Chinese Journal of Rare Metals, 2008, 32(5):674-678.
[7] 余永宁. 金属学原理[M]. 北京:冶金工业出版社, 2003.464-465.
[8] ZENER C, HOLLOM J H. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[9] SHI H, MALAREN A J, SELLARS C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Engineering, 1997, 13(3):210-216.
[10] 沈健. AA7050铝合金的热加工变形特征[J].中国有色金属学报, 2001, 11(4):593-597. SHEN Jian. Deformation feature of AA7050 aluminum alloy under hot working[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(4):593-597.
[11] SELLARS C M, TEGART W J M. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1139.
[12] MCQUEEM H J, YUE S, RYAN N D, et al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995, 53(1-2):293-310.
[13] MCQUEEN H J, FRY E, BELLING J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn (AA5083)[J]. Journal of Materials Engineering and Performance, 2001, 10(2):164-172.
[14] POIRIER J P.晶体的高温塑性变形[M]. 关德林, 译.大连:大连理工出版社, 1989.52-54.
[15] JONAS J J, SELLARS C M, MCG W J. Strength and structure under hot working conditions[J]. Tegart Int Metall Reviews, 1969, 130(14):1-24.
[16] SHEPPARD T, PARSON N C, ZAIDI M A. Dynamic recrystallization in Al-7Mg alloy[J]. Met Sci, 1983, 17(10):481-490.
[17] 林启权, 张辉, 彭大暑, 等. 2519铝合金热压缩变形流变应力行为[J]. 热加工工艺, 2002, (3):3-5. LIN Qi-quan, ZHANG Hui, PENG Da-shu, et al. Flow stress behavior of 2519 aluminum alloy under hot compression deformation[J]. Hot Working Technology, 2002, (3):3-5.
[18] 蒋树农, 刘楚明, 李慧中, 等. 99.992%高纯多晶铝热压缩流变应力特征[J]. 热加工工艺, 2004, (9):17-19. JIANG Shu-nong, LIU Chu-ming, LI Hui-zhong, et al. Flow stress features of 99.992% aluminum under hot compression deformation[J]. Hot Working Technology, 2004, (9):17-19.
[19] LEYENS C, PETERS M.钛与钛合金[M]. 陈振华, 译.北京:化学工业出版社, 2005.4-5.
[20] 沈桂琴, 张虹, 王世洪, 等. Ti-10V-2Fe-3Al合金的应力诱发马氏体转变[J]. 航空材料学报, 1997, 17(2):26-31. SHEN Gui-qin, ZHANG Hong, WANG Shi-hong, et al. Stress induced formation of martensite in Ti-10V-2Fe-3Al alloy[J]. Journal of Aeronautical Materials, 1997, 17(2):26-31.
[21] DUERIG T W, ALBRECHT J, RICHTER D, et al.Formation and reversion of stress induced martensite inTi-10V-2Fe-3Al[J].Acta Metallurgica, 1980, 30:2161-2172.
[22] 陈威, 孙巧艳, 肖林, 等. 应变速率对β固溶Ti-10V-2Fe-3Al合金应力诱发马氏体相变的影响[J]. 中国有色金属学报, 2010, 20(11):2124-2129. CHEN Wei, SUN Qiao-yan, XIAO Lin, et al. Influence of strain rate on stress induced martensitic transformation in β solution treated Ti-10V-2Fe-3Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11):2124-2129.
[1] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
[2] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[3] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[6] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[7] 于建明, 温彤, 岳远旺, 吴诗仁, 雷帆, 肖冰娥. 基于BP神经网络的AZ31镁合金加工图参数优化[J]. 材料工程, 2013, 0(9): 27-31.
[8] 李波, 潘清林, 张志野, 李晨, 尹志民. 含钪Al-Zn-Mg合金的热变形行为和显微组织[J]. 材料工程, 2013, 0(11): 6-11.
[9] 陶乐晓, 臧金鑫, 张坤, 陈慧琴. 新型高强Al-Zn-Mg-Cu合金的热变形行为和热加工图[J]. 材料工程, 2013, 0(1): 16-20.
[10] 付明杰, 静永娟, 张继. 挤压开坯γ-TiAl合金的热变形行为研究[J]. 材料工程, 2011, 0(5): 62-65.
[11] 余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
[12] 薛克敏, 张青, 李萍, 段园培. β21S钛合金高温变形行为研究[J]. 材料工程, 2008, 0(4): 1-4,69.
[13] 廖舒纶, 张立文, 岳重祥, 郭书奇, 甄玉. GCr15热变形行为与流变应力模型的研究[J]. 材料工程, 2008, 0(4): 8-10,14.
[14] 易幼平, 杨积慧, 蔺永诚. 7050铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007, 0(4): 20-22,26.
[15] 聂德福, 赵杰, 莫涛. X70管线钢的室温蠕变及其对流变应力的影响[J]. 材料工程, 2006, 0(6): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn