Research on Hot Compressive Behavior of Ti-5Mo-5V-1Cr-3Al Alloy
CUI Xue-fei1, MI Xu-jun2, LIN Chen-guang1, HUI Song-xiao2, WEI Yan-guang1, TAO Hai-ming1
1. Powder Metallurgy and Special Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. State Key Laboratory for Fabrication & Processing of Non-ferrous Metals, General Research Institute for Nonferrous Metals, Beijing 100088, China
Abstract:Isothermal compression test was carried out for Ti-5Mo-5V-1Cr-3Al (abbreviated as 1Cr) alloy in the temperature range of 700-900℃ and in the strain rate range of 0.001-1s-1. The results show that the flow stress is sensitive to the deformation temperature and the strain rate. Dynamic recrystallization occurs in the temperature range of 700-800℃. In the temperature range of 800-900℃, multi-peaks stress dynamic recrystallization exhibits in the low strain rate of 0.001s-1 and dynamic recovery exhibits in the strain rate range of 0.01-1s-1. The flow stress behaviors of Ti-5Mo-5V-1Cr-3Al alloy during the isothermal compression could be expressed by the Arrhenius constitutive equation including Zener-Holomon parameters. The hot deformation activation energy is 456kJ/mol. The metallographic results indicate that the dynamic behavior of the material in hot compression process is affected by not only the rate and the temperature of the deformation, but also the microstructure and phase structure of the material. During hot compression deformation under a low strain rate of 0.001s-1, the alloy presents the dynamic recrystallization behavior even near the phase transition point or the higher temperature (800-900℃), which is closely related to the martensitic transformation induced by the strain. The precipitation of the martensite promotes dynamic recrystallization behavior during the hot deformation.
崔雪飞, 米绪军, 林晨光, 惠松晓, 魏衍广, 陶海明. Ti-5Mo-5V-1Cr-3Al合金的热压缩变形行为研究[J]. 材料工程, 2013, 0(12): 19-26.
CUI Xue-fei, MI Xu-jun, LIN Chen-guang, HUI Song-xiao, WEI Yan-guang, TAO Hai-ming. Research on Hot Compressive Behavior of Ti-5Mo-5V-1Cr-3Al Alloy. Journal of Materials Engineering, 2013, 0(12): 19-26.
[1] WEISS I, SEMIATIN S L.Thermomechanical processing of beta titanium alloys-an overview[J].Materials Science and Engineering:A, 1998, 243(1-2):46-65.
[2] BOYER R R.An over view on use of titanium in aerospace industry[J].Materials Science and Engineering:A, 1996, 213(1-2):103-114.
[3] 赵永庆, 奚正平, 曲恒磊. 我国航空用钛合金材料研究现状[J].航空材料学报, 2003, 23(增刊1):215-219.ZHAO Yong-qing, XI Zheng-ping, QU Heng-lei. Current situation of titanium alloy materials used for national aviation[J]. Journal of Aeronautical Materials, 2003, 23(S1):215-219.
[4] 付艳艳, 宋月清, 惠松骁, 等.航空用钛合金的研究与应用进展[J].稀有金属, 2006, 30(6):850-856. FU Yan-yan, SONG Yue-qing, HUI Song-xiao, et al. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6):850-856.
[5] 张翥, 惠松骁, 刘伟.高强高韧TBl0钛合金棒材研究[J].稀有金属, 2006, 30(2):221-225.ZHANG Zhu, HUI Song-xiao, LIU Wei. High strength and high toughness TB10 titanium alloy bars[J]. Chinese Journal of Rare Metals, 2006, 30(2):221-225.
[6] 毛柏平, 郭胜利, 沈健. Ti-25523钛合金热变形流变行为的研究[J]. 稀有金属, 2008, 32(5):674-678.MAO Bai-ping, GUO Sheng-li, SHEN Jian. Study on hot deformation behavior of Ti-25523 titanium alloy[J]. Chinese Journal of Rare Metals, 2008, 32(5):674-678.
[7] 余永宁. 金属学原理[M]. 北京:冶金工业出版社, 2003.464-465.
[8] ZENER C, HOLLOM J H. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[9] SHI H, MALAREN A J, SELLARS C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Engineering, 1997, 13(3):210-216.
[10] 沈健. AA7050铝合金的热加工变形特征[J].中国有色金属学报, 2001, 11(4):593-597. SHEN Jian. Deformation feature of AA7050 aluminum alloy under hot working[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(4):593-597.
[11] SELLARS C M, TEGART W J M. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1139.
[12] MCQUEEM H J, YUE S, RYAN N D, et al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995, 53(1-2):293-310.
[13] MCQUEEN H J, FRY E, BELLING J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn (AA5083)[J]. Journal of Materials Engineering and Performance, 2001, 10(2):164-172.
[14] POIRIER J P.晶体的高温塑性变形[M]. 关德林, 译.大连:大连理工出版社, 1989.52-54.
[15] JONAS J J, SELLARS C M, MCG W J. Strength and structure under hot working conditions[J]. Tegart Int Metall Reviews, 1969, 130(14):1-24.
[16] SHEPPARD T, PARSON N C, ZAIDI M A. Dynamic recrystallization in Al-7Mg alloy[J]. Met Sci, 1983, 17(10):481-490.
[17] 林启权, 张辉, 彭大暑, 等. 2519铝合金热压缩变形流变应力行为[J]. 热加工工艺, 2002, (3):3-5. LIN Qi-quan, ZHANG Hui, PENG Da-shu, et al. Flow stress behavior of 2519 aluminum alloy under hot compression deformation[J]. Hot Working Technology, 2002, (3):3-5.
[18] 蒋树农, 刘楚明, 李慧中, 等. 99.992%高纯多晶铝热压缩流变应力特征[J]. 热加工工艺, 2004, (9):17-19. JIANG Shu-nong, LIU Chu-ming, LI Hui-zhong, et al. Flow stress features of 99.992% aluminum under hot compression deformation[J]. Hot Working Technology, 2004, (9):17-19.
[19] LEYENS C, PETERS M.钛与钛合金[M]. 陈振华, 译.北京:化学工业出版社, 2005.4-5.
[20] 沈桂琴, 张虹, 王世洪, 等. Ti-10V-2Fe-3Al合金的应力诱发马氏体转变[J]. 航空材料学报, 1997, 17(2):26-31. SHEN Gui-qin, ZHANG Hong, WANG Shi-hong, et al. Stress induced formation of martensite in Ti-10V-2Fe-3Al alloy[J]. Journal of Aeronautical Materials, 1997, 17(2):26-31.
[21] DUERIG T W, ALBRECHT J, RICHTER D, et al.Formation and reversion of stress induced martensite inTi-10V-2Fe-3Al[J].Acta Metallurgica, 1980, 30:2161-2172.
[22] 陈威, 孙巧艳, 肖林, 等. 应变速率对β固溶Ti-10V-2Fe-3Al合金应力诱发马氏体相变的影响[J]. 中国有色金属学报, 2010, 20(11):2124-2129. CHEN Wei, SUN Qiao-yan, XIAO Lin, et al. Influence of strain rate on stress induced martensitic transformation in β solution treated Ti-10V-2Fe-3Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11):2124-2129.