Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (12): 37-43    DOI: 10.3969/j.issn.1001-4381.2013.12.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
活塞环用Mo-(NiCr-Cr3C2)复合涂层的优化研究
李辉, 孙日超, 杨海鑫, 谷佳宾, 栗卓新
北京工业大学 材料科学与工程学院, 北京 100124
Optimization of Mo-(NiCr-Cr3C2) Composite Coating for Piston Ring Application
LI Hui, SUN Ri-chao, YANG Hai-xin, GU Jia-bin, LI Zhuo-xin
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(4531 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用机械混合方法配制喷涂用粉末Mo-(NiCr-Cr3C2),并利用大气等离子喷涂方法制备活塞环耐磨涂层,对涂层进行力学性能以及摩擦学性能测试。结果表明,Mo的添加有助于减小涂层的孔隙率,涂层显微硬度随Mo含量的增加而降低,添加20%(质量分数)Mo的复合涂层具有较好的摩擦磨损性能。复合涂层的磨损主要表现为黏着磨损和磨粒磨损,NiCr-Cr3C2含量高的涂层存在较多的剥落现象。涂层的耐磨性与涂层的硬度模量比(H/E)有较好的对应关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
孙日超
杨海鑫
谷佳宾
栗卓新
关键词 NiCr-Cr3C2Mo复合涂层力学性能    
Abstract:The composite powder of Mo-(NiCr-Cr3C2) was mechanically blended and deposited using atmospheric plasma spraying. The mechanical property and tribological performance of the prepared coating were tested. The results show that the porosity and the microhardness of the composite coating are inversely proportional to the Mo content. The coating with the Mo addition of 20%(mass fraction) presents better performance in the frictional test. All the composite coatings mainly endures adhesive wear and abrasive wear. The coating containing large portion of NiCr-Cr3C2 is prone to flake during the wear. The wear resistance of the coating shows a good accordance with the index of H/E of the coating.
Key wordsNiCr-Cr3C2    Mo    composite coating    mechanical property
收稿日期: 2012-11-09      出版日期: 2013-12-20
中图分类号:  TG17  
  TH11  
基金资助:北京市自然科学基金重点资助项目(2101003);清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF11B07)
作者简介: 李辉(1976- ),男,博士,副教授,硕士研究生导师,主要研究方向为热喷涂与焊接,联系地址:北京市朝阳区平乐园100号北京工业大学材料学院328室(100124),E-mail:hui.li@bjut.edu.cn
引用本文:   
李辉, 孙日超, 杨海鑫, 谷佳宾, 栗卓新. 活塞环用Mo-(NiCr-Cr3C2)复合涂层的优化研究[J]. 材料工程, 2013, 0(12): 37-43.
LI Hui, SUN Ri-chao, YANG Hai-xin, GU Jia-bin, LI Zhuo-xin. Optimization of Mo-(NiCr-Cr3C2) Composite Coating for Piston Ring Application. Journal of Materials Engineering, 2013, 0(12): 37-43.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.12.007      或      http://jme.biam.ac.cn/CN/Y2013/V0/I12/37
[1] HERBST-DEDERICHS C. Thermal spray solutions for diesel engine piston rings[A]. Proceedings of the 2003 International Thermal Spray Conference[C]. Materials Park, Ohio, USA:ASM International, 2003.129-138.
[2] PRIEST M, TAYLOR C M. Automobile engine tribology approaching the surface[J]. Wear, 2000, 241(2):193-203.
[3] TAYLOR C M. Automobile engine tribology-design consideration for efficiency and durability[J]. Wear, 1998, 221(1):1-8.
[4] CHO D H, LEE Y Z. Evaluation of ring surfaces with several coatings for friction, wear and scuffing life[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2009, 19(4):992-996.
[5] KARAMIS M B, YILDIZLI K, CAKIRER H. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring[J]. Applied Surface Science, 2004, 230(1-4):191-200.
[6] 鹿云. 柴油机活塞环缸套摩擦学特性研究[J]. 汽车技术, 2008, 20(5):88-92. LU Y. Study on tribology property of cylinder liner piston ring for diesel engine[J]. Automobile Technology, 2008, 20(5):88-92.
[7] NIRANATLUMPONG P, KOIPRASERT H. The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior[J]. Surface and Coatings Technology, 2010, 205(2):483-489.
[8] LEGG K O, GRAHAM M, CHANG P, et al. The replacement of electroplating[J]. Surface and Coatings Technology, 1996, 81(1):99-105.
[9] RASTEGAR F, RICHARDSON D E. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines[J]. Surface and Coatings Technology, 1997, 90(1-2):156-163.
[10] AHN H S, LYO I W, LIM D S. Influence of molybdenum composition in chromium oxide-based coatings on their tribological behavior[J]. Surface and Coatings Technology, 2000, 133-134:351-361.
[11] 周克崧. 热喷涂技术替代电镀硬铬的研究进展[J]. 中国有色金属学报, 2004, 14(增刊1):182-191.ZHOU K S. Progress of thermal spray coating of hard Cr instead of plating[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(S1):182-191.
[12] 祁三军, 陈阳, 张萍. 内燃机活塞环表面处理技术的发展趋势[J]. 机车车辆工艺, 2006, (2):7-9. QI S J, CHEN Y, ZHANG P. Progress in the surface treatment technologies for the piston ring of diesel engine[J]. Locomotive and Rolling Stock Technology, 2006, (2):7-9.
[13] WOYDT M, KELLING N. Testing the tribological properties of lubricants and materials for the system "piston ring/cylinder liner" outside of engines[J]. Industrial Lubrication and Tribology, 2003, 55(5):213-222.
[14] WOYDT M, EBRECHT J. Testing friction and wear of the tribosystem piston ring and cylinder liner outside of engines[J]. Tribo Test, 2008, 14(2):113-126.
[15] OZDEMIR I, TEKMEN C, OKUMUS S C, et al. Thermal behaviour of plasma-sprayed Mo coating on cast-iron substrate[J]. Surface and Coatings Technology, 2003, 174-175:1064-1069.
[16] HWANG J H, HAN M S, KIM D Y, et al. Tribological behavior of plasma spray coatings for marine diesel engine piston ring and cylinder liner[J]. Journal of Materials Engineering and Performance, 2006, 15(3):328-335
[17] MARSHALL D B, NOMA T, EVANS A G. Simple method for determining elastic-modulus-to-hardness ratios using knoop indentation measurements[J]. Communications of the American Ceramic Society, 1982, 65(10):C175-C176.
[18] SUI P C, ARIGA S. Piston ring pack friction and lubrication analysis of an automotive engine using a mixed lubrication model[A]. International Pacific Conference on Automotive Engineering[C]. Phoenix, Arizona, USA:SAE International, 1993.
[19] JOHANSSON S, NILSSON P H, OHLSSON R, et al. Experimental friction evaluation of cylinder liner/piston ring contact[J]. Wear, 2011, 271(3-4):625-633.
[20] 黑鹏辉. 等离子喷涂制备Cr3C2-NiCr与WC-NiCr涂层及其结构性能[D]. 天津:天津大学, 2008.
[21] XIE G Z, LU Y J, HE Z Y, et al. Microstructure and corrosion properties of plasma-sprayed NiCr-Cr3C2 coatings comparison with different post treatment[J]. Surface and Coatings Technology, 2008, 202(13):2885-2890.
[22] 温诗铸, 黄平. 摩擦学原理[M]. 北京:清华大学出版社, 2008.262-272.
[23] HOLMBERG K, MATTHEWS A, RONKAINEN H. Coatings tribology-contact mechanisms and surface design[J]. Tribology International, 1998, 31(1-3):107-120.
[24] JIN Y S, YANG Y Y. Tribological behavior of various plasma-sprayed ceramic coatings[J]. Surface and Coatings Technology, 1997, 88(1-3):248-256.
[25] HOUDKOVÁ Š, ZAHÁLKA F, KAŠPAROVÁ M, et al. Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J]. Tribology Letters, 2011, 43(2):139-154.
[26] HUANG C B, DU L Z, ZHANG W G. Preparation and characterization of atmospheric plasma sprayed NiCr-Cr3C2-BaF2 center dot CaF2 composite coating[J]. Surface and Coatings Technology, 2009, 203(20-21):3058-3065.
[27] DAO M, LU L, ASARO R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J]. Acta Materialia, 2007, 55(12):4041-4065.
[28] LEYLAND A, MATTHEWS A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior[J]. Wear, 2000, 246(1-2):1-11.
[29] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 164(9):533-538.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn