Abstract:The composite powder of Mo-(NiCr-Cr3C2) was mechanically blended and deposited using atmospheric plasma spraying. The mechanical property and tribological performance of the prepared coating were tested. The results show that the porosity and the microhardness of the composite coating are inversely proportional to the Mo content. The coating with the Mo addition of 20%(mass fraction) presents better performance in the frictional test. All the composite coatings mainly endures adhesive wear and abrasive wear. The coating containing large portion of NiCr-Cr3C2 is prone to flake during the wear. The wear resistance of the coating shows a good accordance with the index of H/E of the coating.
李辉, 孙日超, 杨海鑫, 谷佳宾, 栗卓新. 活塞环用Mo-(NiCr-Cr3C2)复合涂层的优化研究[J]. 材料工程, 2013, 0(12): 37-43.
LI Hui, SUN Ri-chao, YANG Hai-xin, GU Jia-bin, LI Zhuo-xin. Optimization of Mo-(NiCr-Cr3C2) Composite Coating for Piston Ring Application. Journal of Materials Engineering, 2013, 0(12): 37-43.
[1] HERBST-DEDERICHS C. Thermal spray solutions for diesel engine piston rings[A]. Proceedings of the 2003 International Thermal Spray Conference[C]. Materials Park, Ohio, USA:ASM International, 2003.129-138.
[2] PRIEST M, TAYLOR C M. Automobile engine tribology approaching the surface[J]. Wear, 2000, 241(2):193-203.
[3] TAYLOR C M. Automobile engine tribology-design consideration for efficiency and durability[J]. Wear, 1998, 221(1):1-8.
[4] CHO D H, LEE Y Z. Evaluation of ring surfaces with several coatings for friction, wear and scuffing life[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2009, 19(4):992-996.
[5] KARAMIS M B, YILDIZLI K, CAKIRER H. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring[J]. Applied Surface Science, 2004, 230(1-4):191-200.
[6] 鹿云. 柴油机活塞环缸套摩擦学特性研究[J]. 汽车技术, 2008, 20(5):88-92. LU Y. Study on tribology property of cylinder liner piston ring for diesel engine[J]. Automobile Technology, 2008, 20(5):88-92.
[7] NIRANATLUMPONG P, KOIPRASERT H. The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior[J]. Surface and Coatings Technology, 2010, 205(2):483-489.
[8] LEGG K O, GRAHAM M, CHANG P, et al. The replacement of electroplating[J]. Surface and Coatings Technology, 1996, 81(1):99-105.
[9] RASTEGAR F, RICHARDSON D E. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines[J]. Surface and Coatings Technology, 1997, 90(1-2):156-163.
[10] AHN H S, LYO I W, LIM D S. Influence of molybdenum composition in chromium oxide-based coatings on their tribological behavior[J]. Surface and Coatings Technology, 2000, 133-134:351-361.
[11] 周克崧. 热喷涂技术替代电镀硬铬的研究进展[J]. 中国有色金属学报, 2004, 14(增刊1):182-191.ZHOU K S. Progress of thermal spray coating of hard Cr instead of plating[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(S1):182-191.
[12] 祁三军, 陈阳, 张萍. 内燃机活塞环表面处理技术的发展趋势[J]. 机车车辆工艺, 2006, (2):7-9. QI S J, CHEN Y, ZHANG P. Progress in the surface treatment technologies for the piston ring of diesel engine[J]. Locomotive and Rolling Stock Technology, 2006, (2):7-9.
[13] WOYDT M, KELLING N. Testing the tribological properties of lubricants and materials for the system "piston ring/cylinder liner" outside of engines[J]. Industrial Lubrication and Tribology, 2003, 55(5):213-222.
[14] WOYDT M, EBRECHT J. Testing friction and wear of the tribosystem piston ring and cylinder liner outside of engines[J]. Tribo Test, 2008, 14(2):113-126.
[15] OZDEMIR I, TEKMEN C, OKUMUS S C, et al. Thermal behaviour of plasma-sprayed Mo coating on cast-iron substrate[J]. Surface and Coatings Technology, 2003, 174-175:1064-1069.
[16] HWANG J H, HAN M S, KIM D Y, et al. Tribological behavior of plasma spray coatings for marine diesel engine piston ring and cylinder liner[J]. Journal of Materials Engineering and Performance, 2006, 15(3):328-335
[17] MARSHALL D B, NOMA T, EVANS A G. Simple method for determining elastic-modulus-to-hardness ratios using knoop indentation measurements[J]. Communications of the American Ceramic Society, 1982, 65(10):C175-C176.
[18] SUI P C, ARIGA S. Piston ring pack friction and lubrication analysis of an automotive engine using a mixed lubrication model[A]. International Pacific Conference on Automotive Engineering[C]. Phoenix, Arizona, USA:SAE International, 1993.
[19] JOHANSSON S, NILSSON P H, OHLSSON R, et al. Experimental friction evaluation of cylinder liner/piston ring contact[J]. Wear, 2011, 271(3-4):625-633.
[20] 黑鹏辉. 等离子喷涂制备Cr3C2-NiCr与WC-NiCr涂层及其结构性能[D]. 天津:天津大学, 2008.
[21] XIE G Z, LU Y J, HE Z Y, et al. Microstructure and corrosion properties of plasma-sprayed NiCr-Cr3C2 coatings comparison with different post treatment[J]. Surface and Coatings Technology, 2008, 202(13):2885-2890.
[22] 温诗铸, 黄平. 摩擦学原理[M]. 北京:清华大学出版社, 2008.262-272.
[23] HOLMBERG K, MATTHEWS A, RONKAINEN H. Coatings tribology-contact mechanisms and surface design[J]. Tribology International, 1998, 31(1-3):107-120.
[24] JIN Y S, YANG Y Y. Tribological behavior of various plasma-sprayed ceramic coatings[J]. Surface and Coatings Technology, 1997, 88(1-3):248-256.
[25] HOUDKOVÁ Š, ZAHÁLKA F, KAŠPAROVÁ M, et al. Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J]. Tribology Letters, 2011, 43(2):139-154.
[26] HUANG C B, DU L Z, ZHANG W G. Preparation and characterization of atmospheric plasma sprayed NiCr-Cr3C2-BaF2 center dot CaF2 composite coating[J]. Surface and Coatings Technology, 2009, 203(20-21):3058-3065.
[27] DAO M, LU L, ASARO R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J]. Acta Materialia, 2007, 55(12):4041-4065.
[28] LEYLAND A, MATTHEWS A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior[J]. Wear, 2000, 246(1-2):1-11.
[29] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 164(9):533-538.