Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (12): 63-67,73    DOI: 10.3969/j.issn.1001-4381.2013.12.012
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
MWCNTs催化Ru(bpy)32+阴极电致化学发光
郭伟玲, 李恩重, 王海斗, 杨大祥
装甲兵工程学院 装备再制造技术国防科技重点实验室, 北京 100072
Cathodic Electrogenerated Chemiluminescence of Ru(bpy)32+ Catalyzed by MWCNTs
GUO Wei-ling, LI En-zhong, WANG Hai-dou, YANG Da-xiang
National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(3410 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用多壁碳纳米管(MWCNTs)修饰的玻碳(GC)电极作为工作电极(MWCNTs/GC),检测Ru(bpy)32+水溶液的电致化学发光(ECL)现象。研究发现:当循环伏安(CVs)曲线扫描还原至+0.3V时,可观察到Ru(bpy)32+的阴极ECL。利用MWCNTs/GC的催化性质可以检测溶液中多巴胺(DA)的含量,其检测限可达1.2×10-11M。提出MWCNTs在电化学还原过程中产生的中间体可以引发Ru(bpy)32+的阴极ECL强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭伟玲
李恩重
王海斗
杨大祥
关键词 纳米材料多壁碳纳米管电致化学发光三联吡啶钌多巴胺    
Abstract:The modified glassy carbon(GC)electrode with multi-walled carbon nanotubes (MWCNTs/GC) was used to detect electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ aqueous solution. The results show that,when the applying potential on the MWCNTs/GC electrode is at positive potential of +0.3V (vs Ag/AgCl), a strong cathodic ECL of Ru(bpy)32+ is observed. Limit of detection of dopamine (DA) in solution tested by means of this catalytic property of MWCNTs/GC is 1.2×10-11M. The intermediate generated from electrochemical reduction of MWCNTs could increase the cathodic ECL of Ru(bpy)32+.
Key wordsnano-material    MWCNTs    electrogenerated chemiluminescence(ECL)    Ru(bpy)32+    DA
收稿日期: 2012-04-22      出版日期: 2013-12-20
中图分类号:  TQ342  
基金资助:装甲兵工程学院创新基金资助项目(2011CJ091);国家杰出青年科学基金资助项目(51125023);国家973项目资助(2011CB013403)
作者简介: 郭伟玲(1980- ),女,讲师,博士,从事专业:材料表面工程,联系地址:北京市丰台区杜家坎21号院装甲兵工程学院装备再制造技术国防科技重点实验室(100072),E-mail:guoweiling_426@163.com
引用本文:   
郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
GUO Wei-ling, LI En-zhong, WANG Hai-dou, YANG Da-xiang. Cathodic Electrogenerated Chemiluminescence of Ru(bpy)32+ Catalyzed by MWCNTs. Journal of Materials Engineering, 2013, 0(12): 63-67,73.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.12.012      或      http://jme.biam.ac.cn/CN/Y2013/V0/I12/63
[1] LIJIMA S.Helical microtubules of graphitic carbon[J].Nature, 1991, 354(6348):56-58.

[2] QU J Y, SHEN Y, QU X H, et al. Electrocatalytic reduction of oxygen at multi-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode[J]. Electroanalysis, 2004, 16(17):1444-1450.

[3] WANG F, HU S S. Electrochemical reduction of dioxygen on carbon nanotubes-dihexadecyl phosphate film electrode[J]. J Electroanal Chem, 2005, 580(1):68-77.

[4] TANG Y F, ALLEN B L, KAUFFMAN D R, et al. Electrocatalytic activity of nitrogen-doped carbon nanotube cups[J]. J Am Chem Soc, 2009, 131(37):13200-13201.

[5] LUO H X, SHI Z J, LI N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Anal Chem, 2001, 73(5):915-920.

[6] CAO W D, FERRANCE J P, DEMAS J, et al. Quenching of the electrochemiluminescence of tri(2, 2'-bipyridine)ruthenium(Ⅱ) by ferrocene and its potential application to quantitative DNA detection[J]. J Am Chem Soc, 2006, 128(23):7572-7578.

[7] XU X H, YANG H C, MALLOUK T E, et al. Immobilization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection[J]. J Am Chem Soc, 1994, 116(18):8386-8387.

[8] YUAN J P, WANG E K. Effects of divalent metal ions on electrochemiluminescence sensor with Ru(bpy)32+ immobilized in eastman-AQ membrane[J]. Electroanalysis, 2008, 20(9):949-954.

[9] TAO Y, LIN Z J, CHEN X M, et al. Tris (2, 2'-bipyridyl)ruthenium electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films[J]. Anal Chim Acta, 2007, 594(2):169-174.
[10] GUO Z H, DONG S J. Electrogenerated chemiluminescence from Ru(bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films[J]. Anal Chem, 2004, 76(10):2683-2688.

[11] HUANG R F, ZHENG X W, QU Y J. Highly selective electrogenerated chemiluminescence (ECL) for sulfide ion determination at multi-wall carbon nanotubes-modified graphite electrode[J]. Anal Chim Acta, 2007, 582(2):267-274.

[12] CAO W D, XU G B, ZHANG Z L, et al.Novel tris(2, 2'-bipyridine)ruthenium(Ⅱ) cathodic electrochemiluminescence in aqueous solution at a glassy carbon electrode[J]. Chem Commum, 2002, (14):1540-1541.

[13] MENENDEZ J A, XIA B, PHILLIPS J, et al. On the modification and characterization of chemical surface properties of activated carbon: microcalorimetric, electrochemical, and thermal desorption probes[J]. Langmuir, 1997, 13(13):3414-3421.

[14] STRELKO V V, KARTEL N T, DUKHNO I N, et al. Methanism of reductive oxygen adsorption on active carbons with various surface chemistry[J]. Surf Sci, 2004, 548(1-3):281-290.

[15] CHANG Y, PALACIOS R E, FAN F F, et al.Electrogenerated chemiluminescence of single conjugated polymer nanoparticles[J].J Am Chem Soc, 2008, 130(6):8906-8907.
[1] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[2] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[3] 党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
[4] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[5] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[6] 武延泽, 王敏, 李锦丽, 赵有璟, 王怀有, 魏明. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1): 10-18.
[7] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[8] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[9] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[10] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[11] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[12] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[13] 刘昊东, 朱光明, 任天宁. 功能性POSS制备的研究进展[J]. 材料工程, 2019, 47(12): 33-42.
[14] 杨丰, 王飞, 贾若飞, 杨丽丽, 杨慧, 李岚. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10): 20-29.
[15] 胡佳勋, 张闻达, 曹琴, 吴叔青. 聚多巴胺改性中空玻璃微珠表面化学镀铜的研究[J]. 材料工程, 2018, 46(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn