Abstract:The modified glassy carbon(GC)electrode with multi-walled carbon nanotubes (MWCNTs/GC) was used to detect electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ aqueous solution. The results show that,when the applying potential on the MWCNTs/GC electrode is at positive potential of +0.3V (vs Ag/AgCl), a strong cathodic ECL of Ru(bpy)32+ is observed. Limit of detection of dopamine (DA) in solution tested by means of this catalytic property of MWCNTs/GC is 1.2×10-11M. The intermediate generated from electrochemical reduction of MWCNTs could increase the cathodic ECL of Ru(bpy)32+.
[1] LIJIMA S.Helical microtubules of graphitic carbon[J].Nature, 1991, 354(6348):56-58.
[2] QU J Y, SHEN Y, QU X H, et al. Electrocatalytic reduction of oxygen at multi-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode[J]. Electroanalysis, 2004, 16(17):1444-1450.
[3] WANG F, HU S S. Electrochemical reduction of dioxygen on carbon nanotubes-dihexadecyl phosphate film electrode[J]. J Electroanal Chem, 2005, 580(1):68-77.
[4] TANG Y F, ALLEN B L, KAUFFMAN D R, et al. Electrocatalytic activity of nitrogen-doped carbon nanotube cups[J]. J Am Chem Soc, 2009, 131(37):13200-13201.
[5] LUO H X, SHI Z J, LI N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Anal Chem, 2001, 73(5):915-920.
[6] CAO W D, FERRANCE J P, DEMAS J, et al. Quenching of the electrochemiluminescence of tri(2, 2'-bipyridine)ruthenium(Ⅱ) by ferrocene and its potential application to quantitative DNA detection[J]. J Am Chem Soc, 2006, 128(23):7572-7578.
[7] XU X H, YANG H C, MALLOUK T E, et al. Immobilization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection[J]. J Am Chem Soc, 1994, 116(18):8386-8387.
[8] YUAN J P, WANG E K. Effects of divalent metal ions on electrochemiluminescence sensor with Ru(bpy)32+ immobilized in eastman-AQ membrane[J]. Electroanalysis, 2008, 20(9):949-954.
[9] TAO Y, LIN Z J, CHEN X M, et al. Tris (2, 2'-bipyridyl)ruthenium electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films[J]. Anal Chim Acta, 2007, 594(2):169-174.
[10] GUO Z H, DONG S J. Electrogenerated chemiluminescence from Ru(bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films[J]. Anal Chem, 2004, 76(10):2683-2688.
[11] HUANG R F, ZHENG X W, QU Y J. Highly selective electrogenerated chemiluminescence (ECL) for sulfide ion determination at multi-wall carbon nanotubes-modified graphite electrode[J]. Anal Chim Acta, 2007, 582(2):267-274.
[12] CAO W D, XU G B, ZHANG Z L, et al.Novel tris(2, 2'-bipyridine)ruthenium(Ⅱ) cathodic electrochemiluminescence in aqueous solution at a glassy carbon electrode[J]. Chem Commum, 2002, (14):1540-1541.
[13] MENENDEZ J A, XIA B, PHILLIPS J, et al. On the modification and characterization of chemical surface properties of activated carbon: microcalorimetric, electrochemical, and thermal desorption probes[J]. Langmuir, 1997, 13(13):3414-3421.
[14] STRELKO V V, KARTEL N T, DUKHNO I N, et al. Methanism of reductive oxygen adsorption on active carbons with various surface chemistry[J]. Surf Sci, 2004, 548(1-3):281-290.
[15] CHANG Y, PALACIOS R E, FAN F F, et al.Electrogenerated chemiluminescence of single conjugated polymer nanoparticles[J].J Am Chem Soc, 2008, 130(6):8906-8907.