Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (12): 85-91    DOI: 10.3969/j.issn.1001-4381.2013.12.016
  综述 本期目录 | 过刊浏览 | 高级检索 |
机械法制备石墨烯的研究进展
段淼, 李四中, 陈国华
华侨大学 材料科学与工程学院, 福建 厦门 361021
Research Progress in Preparation of Graphene by Mechanical Exfoliation
DUAN Miao, LI Si-zhong, CHEN Guo-hua
Department of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
全文: PDF(1027 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 作为近年来的材料“明星”石墨烯,其制备方法的研究大多集中在化学方向,然而其许多本征物性的发现却来自于微机械剥离法制备的石墨烯。本文全面介绍了各类机械法诸如胶带法,“纳米铅笔”法,超薄切片法,超声波法,行星式球磨法,搅拌球磨法,低能纯剪切磨法和三辊磨剥法制备石墨烯的研究进展,评述了以上制备方法的特点及其面临的问题,并展望了机械法制备石墨烯的未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段淼
李四中
陈国华
关键词 石墨烯制备机械剥离    
Abstract:The preparation methods of graphene as a "star" material were mainly tended to chemical ways in recent years. However, many intrinsic physical properties of graphene were discovered from the graphene that was prepared by micro-mechanical peeling method. In this review, the recent advances in all kinds of mechanical exfoliation methods which contained "scotch tape" method,"nanopencil" method, ultrathin sections method, ultrasonic method, planetary ball milling method, stirred ball milling method, low energy pure shear milling method and three-roll milling method were highlighted, and the advantages and disadvantages of these methods were analyzed. The development trend of mechanical exfoliation was prospected.
Key wordsgraphene    preparation    mechanical exfoliation
收稿日期: 2012-12-16      出版日期: 2013-12-20
中图分类号:  TB321  
基金资助:国家自然科学基金面上项目资助(51373059);福建省产学研重大项目资助(2013H6014)
通讯作者: 陈国华(1964- ),男,教授,博士,从事石墨烯的制备及其聚合物基复合材料研究,联系地址:福建省厦门市集美区集美大道668号华侨大学泛华科技大楼石墨烯工程实验室(361021),E-mail:hdcgh@hqu.edu.cn     E-mail: hdcgh@hqu.edu.cn
作者简介: 段淼(1988- ),男,硕士研究生,从事石墨烯和C/C复合材料制备的相关研究工作,联系地址:福建省厦门市集美区集美大道668号华侨大学材料科学与工程学院(361021),E-mail:duan@hqu.edu.cn
引用本文:   
段淼, 李四中, 陈国华. 机械法制备石墨烯的研究进展[J]. 材料工程, 2013, 0(12): 85-91.
DUAN Miao, LI Si-zhong, CHEN Guo-hua. Research Progress in Preparation of Graphene by Mechanical Exfoliation. Journal of Materials Engineering, 2013, 0(12): 85-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.12.016      或      http://jme.biam.ac.cn/CN/Y2013/V0/I12/85
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696):666—669.
[2] NOVOSELOV K S, GEIM A K. The rise of graphene[J].Nature Materials, 2007, 6(3):183—191.
[3] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J].Nature Nanotechnology, 2008, 3(8):491-495.
[4] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science, 2008, 321(5887):385-388.
[5] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[6] STOLLER M D, PARK S, ZHU Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10):3498-3502.
[7] ZHANG L L, ZHOU R, ZHAO X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29):5983-5992.
[8] 何铁石, 赵龙, 刘志成, 等. 石墨烯基超级电容器电极材料研究进展[J].电子元件与材料, 2011, 30(12):71-73. HE Tie-shi, ZHAO Long, LIU Zhi-cheng, et al. Research progress of graphene-based composites for supercapacitor electrodes[J]. Electronic Components and Materials, 2011, 30(12):71-73.
[9] 余泉茂, 王仁清. 石墨烯制备及其在超级电容器中的应用研究[J].材料导报, 2012, 26(8):7-13.YU Quan-mao, WANG Ren-qing. Research on preparation and application of graphene as electrode in supercapacitors[J]. Materials Review, 2012, 26(8):7-13.
[10] 傅强, 包信和. 石墨烯的化学研究进展[J].科学通报, 2009, 54(18):2657-2666. FU Qiang, BAO Xin-he. Progress in graphene chemistry[J]. Chinese Sci Bull, 2009, 54(18):2657-2666.
[11] 黄毅, 陈永胜. 石墨烯的功能化及其相关应用[J].中国科学, 2009, 39(9):887-896. HUANG Yi, CHEN Yong-sheng. Functionalization of graphene and their applications[J]. Sci China, 2009, 39(9):887-896.
[12] 陈国华.石墨烯材料科技与产业现状.北京:科学出版社, 2012.21-24.
[13] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two dimensional atomic crystals[J].PNAS, 2005, 102(30):10451—10453.
[14] BOURLINOS A B, GOURNIS D, PETRIDIS D, et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J].Langmuir, 2003, 19(15):6050—6055.
[15] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon, 2007, 45(7):1558—1565.
[16] BERGER C, SONG Z M, LI X B, et al. Electron confinement and coherence in patterned epitaxial graphene[J].Science, 2006, 312(5777):1191—1196.
[17] BERGER C, SONG Z M, LI T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J].Journal of Physical Chemistry B, 2004, 108(52):19912—19916.
[18] OBRAZTSOV A N. Chemical vapour deposition: making graphene on a large scale[J].Nature Nanotechnology, 2009, 4(4):212—213.
[19] LI X S, CAI W W, COLOMBO L, et al. Evolution of graphene growth on Ni and Cu by carbon iso-tope labeling[J].Nano Letters, 2009, 9(12):4268—4272.
[20] SHU H B, CHEN X S, TAO X M, et al. Edge structural stability and kinetics of graphene chemical vapor deposition growth[J].ACS Nano, 2012, 6(4):3243—3250.
[21] SUTTER P W, FLEGE J I, SUTTER E A. Epitaxial graphene on ruthenium[J].Nature Materials, 2008, 7(5):406—411.
[22] PAN Y, ZHANG H G, SHI D X, et al. Highly ordered, millimeter scale, continuous, single-crystalline graphene monolayer formed on Ru(0001)[J].Advanced Materials, 2009, 21(27):2777—2780.
[23] MEYER J C, GEIM A K, KATSNELSON M I, et al. On the roughness of single-and bi-layer graphene membranes[J].Solid State Commun, 2007, 143(1-2):101—109.
[24] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in graphene[J].Nature Materials, 2007, 6(11):858—861.
[25] 唐多昌, 李晓红, 袁春华, 等. 石墨烯机械剥离法[J].西南科技大学学报, 2010, 25(3):16—18. TANG Duo-chang, LI Xiao-hong, YUAN Chun-hua, et al. Preliminary study of high quality graphene prepared by mechanical exfoliation[J]. Journal of Southwest University of Science and Technology, 2010, 25(3):16—18.
[26] PANG S P, ENGLERT J M, TSAO H N, et al. Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene[J].Advanced Materials, 2010, 22(47):5374—5377.
[27] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J].Nature, 2005, 438(7065):197—200.
[28] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J].Nature, 2005, 438(7065):201—204.
[29] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum hall effect in graphene[J].Science, 2007, 315(5817):1379—1379.
[30] OHASHI Y, KOIZUMI T, YOSHIKAWA T, et al. Size effect in the in-plane electrical resistivity of very thin graphite crystals[J].TANSO, 1997, 180:235—238.
[31] ZHANG Y B, SMALL J P, PONTIUS W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J].Applied Physics Letters, 2005, 86(7):073104-1—073104-3.
[32] PERRET R, RULAND W. The microstructure of PAN-base carbon fibres[J].Journal of Applied Crystallography, 1970, 3:525—532.
[33] 王延相, 刘玉兰, 王丽民, 等. 由聚丙烯腈基碳纤维制备石墨烯薄膜的探索研究[J].功能材料, 2011, 42(3):520—523. WANG Yan-xiang, LIU Yu-lan, WANG Li-min, et al. Preparation and research of graphene sheets from PAN based carbon fibers[J]. Journal of Functional Materials, 2011, 42(3):520—523.
[34] CHEN G H, WENG W G, WU D J. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J].Carbon, 2004, 42(4):753—759.
[35] CHEN G H, WENG W G, WU D J, et al. PMMA/graphite nanosheets composite and its conducting properties[J].European Polymer Journal, 2003, 39(12):2329—2335.
[36] 张洪艳, 王海泉, 陈国华. 新型导电填料——纳米石墨微片[J].塑料, 2006, 35(4):42—45. ZHANG Hong-yan, WANG Hai-quan, CHEN Guo-hua. A new kind of conducting filler—graphite nanosheets[J]. Plastics, 2006, 35(4):42—45.
[37] WENG W G, CHEN G H, WU D J. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites[J].Polymer, 2003, 44(26):8119—8132.
[38] CHEN G H, WENG W G, WU D J. Nonlinear conduction in the nylon6/foliated graphite nanocomposites above the percolation threshold[J].Journal of Polymer Science Part B:Polymer Physics, 2004, 42(1):155—167.
[39] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology, 2008, 3(9):563—568.
[40] COLEMAN J N. Liquid-phase exfoliation of nanotubes and graphene[J].Advanced Functional Materials, 2009, 19(23):3680—3695.
[41] KHAN U, O'NEILL A, LOTYA M, et al. High-concentration solvent exfoliation of graphene[J].Small, 2010, 6(7):864—871.
[42] 颜肖慈, 罗明道.界面化学[M].北京:化学工业出版社, 2005.12—15.
[43] LOTYA M, HERNANDEZ Y, KING P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J].Journal of the American Chemical Society, 2009, 131(10):3611—3620.
[44] GUARDIA L, FERNANDEZ-MERINO M J, PAREDES J I, et al. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants[J].Carbon, 2011, 49(5):1653—1662.
[45] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J].Nature, 2006, 442(7100):282—286.
[46] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J].Advanced Materials, 2010, 22(35):3906—3924.
[47] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J].Nature Nanotechnology, 2009, 4(4):217—224.
[48] 吉莉, 张天友, 张东. 超声波频率和作用方式对剥离氧化石墨的影响[J].材料开发与应用, 2011, 26(1):42—44. JI Li, ZHANG Tian-you, ZHANG Dong. Influence of ultrasonic frequencies and modes on exfoliation of graphite oxide[J]. Development and Application of Materials, 2011, 26(1):42—44.
[49] 方景光. 粉磨工艺及设备[M].武汉: 武汉理工大学出版社, 2002.1—4.
[50] ZHAO W F, FANG M, WU F R, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J].Journal of Materials Chemistry, 2010, 20(28):5817—5819.
[51] WU H, ZHAO W F, HU H W, et al. One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites[J].Journal of Materials Chemistry, 2011, 21(24):8626—8632.
[52] WU H, ZHAO W F, CHEN G H. One-pot in situ ball milling preparation of polymer/graphene nanocomposites[J].Journal of Applied Polymer Science, 2012, 125(5):3899—3903.
[53] FAN Y C, WANG L J, LI J L, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites[J].Carbon, 2010, 48(6):1743—1749.
[54] LEN V, QUINTANA M, HERRERO M A, et al. Few-layer graphenes from ball-milling of graphite with melamine[J].Chem Commun, 2011, 47(39):10936—10938.
[55] JEON I Y, SHIN Y R, SOHN G J, et al. Edge-carboxylated graphene nanosheets via ball milling[J].PNAS, 2012, 109(15):5588—5593.
[56] 甘路平, 程起林, 顾达. 石墨超细片状磨碎的机理及方法[J].化工生产与技术, 1999, (22):28—30. GAN Lu-ping, CHENG Qi-lin, GU Da. Mechanism and method of grinding natural scale graphite into laminate ultrafine particles in water[J]. Chemical Production and Technology, 1999, (22):28—30.
[57] KNIEKE C, BERGER A, VOIGT M, et al. Scalable production of graphene sheets by mechanical delamination[J].Carbon, 2010, 48(11):3196—3204.
[58] 江莞, 范宇驰, 刘霞, 等. 机械剥离法制备石墨烯及其在石墨烯/陶瓷复合材料制备中的应用[J].中国材料进展, 2011, 30(1):12—20. JIANG Wan, FAN Yu-chi, LIU Xia, et al. Preparation of graphene by mechanical exfoliation and its application in preparation of graphene/ceramic composites[J]. Materials China, 2011, 30(1):12—20.
[59] ANTISARI M V, MONTONE A, JOVIC N, et al. Low energy pure shear milling: a method for the preparation of graphite nano-sheets[J].Scripta Materialia, 2006, 55(11):1047—1050.
[60] CHEN J F, DUAN M, CHEN G H. Continuous mechanical exfoliation of graphene sheets via three-roll mill[J].Journal of Materials Chemistry, 2012, 22(37):19625—19628.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[3] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[4] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[5] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[6] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[7] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[8] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[11] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[12] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[13] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[14] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[15] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn