Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (12): 92-99    DOI: 10.3969/j.issn.1001-4381.2013.12.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
磁铅石结构六铝酸盐热障涂层的研究现状
黄亮亮, 孟惠民, 陈龙
北京科技大学 新材料技术研究院, 北京 100083
Research Status of Hexaaluminate Thermal Barrier Coatings with Magnetoplumbite Structure
HUANG Liang-liang, MENG Hui-min, CHEN Long
Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1779 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 六铝酸盐材料因其独特的磁铅石结构而具有非常好的高温相稳定性和热物理性能,是一类使用温度可以超过1200℃,而取代目前经典的氧化钇部分稳定二氧化锆的重要高温热障涂层候选材料。本文详细综述了六铝酸盐的结构特征、合成方法、物理性能和抗热震性能,并总结了目前对其失效机理及涂层性能改进的研究现状,指出了六铝酸盐热障涂层系统的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄亮亮
孟惠民
陈龙
关键词 热障涂层六铝酸盐磁铅石失效机理研究现状    
Abstract:Hexaaluminate materials have excellent high-temperature phase stability and thermophysical properties for its special magnetoplumbite structure. It has the potential to substitute the state-of-the-art yttria partially stabilized zirconia (YSZ) thermal barrier coatings and will be applied at the temperature above 1200℃.The structure characteristics, synthesis methods, physical properties and thermal shock resistance of hexaaluminate, and summarized its research status on failure mechanism and coating performance improvements were mainly reviewed in this article. The direction of development on the hexaaluminate thermal barrier coating system was proposed.
Key wordsthermal barrier coating    hexaaluminate    magnetoplumbite    failure mechanism    research status
收稿日期: 2012-08-05      出版日期: 2013-12-20
中图分类号:  TB35  
通讯作者: 孟惠民(1963- ),男,教授,博士生导师,主要研究方向为电化学、热喷涂、腐蚀与防护等领域,联系地址:北京市学院路30号北京科技大学腐蚀楼223(100083),E-mail:ecm@ustb.edu.cn     E-mail: ecm@ustb.edu.cn
作者简介: 黄亮亮(1985- ),男,博士研究生,主要研究方向为热障涂层和腐蚀与防护等领域,联系地址:北京市学院路30号北京科技大学腐蚀楼215(100083),E-mail:hluna@163.com
引用本文:   
黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
HUANG Liang-liang, MENG Hui-min, CHEN Long. Research Status of Hexaaluminate Thermal Barrier Coatings with Magnetoplumbite Structure. Journal of Materials Engineering, 2013, 0(12): 92-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.12.017      或      http://jme.biam.ac.cn/CN/Y2013/V0/I12/92
[1] XU Z H, HE L M, MU R D, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2-(Zr0.7Ce0.3)2O7 coatings[J]. Journal of the European Ceramic Society, 2009, 29(9):1771-1779.
[2] SCHULZ U, LEYENS C, FRITSCHER K. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1):73-80.
[3] EVANS A G, MUMM D R, HUTCHINSON J W. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-555.
[4] MUMM D R, EVANS A G, SPITSBERG I T. Characterization of a cyclic displacement instability for a thermal grown oxide in a thermal barrier system[J]. Acta Materialia, 2001, 49(12):2329-2340.
[5] WRIGHT P K. Influence of cyclic strain on life a PVD TBC[J]. Materials Science and Engineering:A, 1998, 245(2):191-200.
[6] 曹学强.热障涂层材料[M].北京:科学出版社, 2007.23-25, 231-245.
[7] BANSAL N P, ZHU D M. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings[J]. Materials Science and Engineering:A, 2007, 459(1-2):192-195.
[8] SARUHAN B, FRANCOIS P, FRITSCHER K, et al. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs[J]. Surface and Coatings Technology, 2004, 182(2-3):175-183.
[9] VAβEN R, TRAEGER F, STÖVER D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems[J]. International Journal of Applied Ceramic Technology, 2004, 1(4): 351-361.
[10] WU J C, LU S Y. Patch-distribution effect on diffusion-limited process in dilute suspension of partially active spheres[J]. Journal of Chemical Physics, 2006, 124(2):340-341.
[11] WU J, WEI X, PADTURE N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications[J]. Journal of the American Ceramic Society, 2002, 85(12):3031-3035.
[12] RAMACHANDRAN C S, BALASUBRAMANIAN V, ANATHAPADMANABHAN P V. Synthesis, spheroidization and spray deposition of lanthanum zirconate using thermal plasma process[J]. Surface and Coatings Technology, 2012, 206(13):3017-3035.
[13] KHOR K A, DONG Z L, GU Y W. Plasma sprayed functionally graded thermal barrier coatings[J]. Materials Letters, 1999, 38(6):437-444.
[14] RONERT VAβEN, MARIA O J, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4):938-942.
[15] LEVI C G. Emerging materials and processes for thermal barrier systems[J]. Current Opinion in Solid State and Materials Science, 2004, 8(1):77-91.
[16] 徐军, 马笑山, 沈雅芳, 等.磁铅石结构晶体LaMgAl11O19形态学[J].材料科学进展, 1991, 5(6):502-507. XU J, MA X S, SHEN Y F, et al. Crystal morphology of magnetoplumbite structure LaMgAl11O19[J]. Materials Science Progress, 1991, 5(6):502-507.
[17] KAHN A, LEJUS A M, MADSAC M, et al. Preparation, structure, optical, and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19)[J].Journal of Applied Physics, 1981, 52(11):6863-6869.
[18] XIE L, CORMACK A N. Cation distribution in magnetoplumbite and β"-alumina structures original[J]. Materials Letters, 1990, 9(11):474-479.
[19] 徐金光, 田志坚, 王军威, 等. 超临界干燥方法对甲烷燃烧催化剂LaMnAl11O19结构及活性的影响[J]. 催化学报, 2002, 23(5):477-480. XU J G, TIAN Z J, WANG J W, et al. Effect of supercritical drying on structure and activity of Mn-substituted hexaaluminate catalyst for methane combustion[J]. Chinese Journal of Catalysis, 2002, 23(5):477-480.
[20] ZHANG Y F, LI Q, MA X, et al. Synthesis and high-pressure sintering of lanthanum magnesium hexaaluminate[J]. Materials Letters, 2008, 62(6-7):923-925.
[21] CAO X Q, ZHANG Y F, ZHANG J F, et al. Failure of the plasma-sprayed coating of lanthanum hexaluminate[J]. Journal of the European Ceramic Society, 2008, 28(10):1978-1986.
[22] CHEN X L, ZHAO Y, GU L J, et al. Hot corrosion behavior of plasma sprayed YSZ/LaMgAl11O19 composite coatings in molten sulfate-vanadate salt[J]. Corrosion Science, 2011, 53(6):2335-2343.
[23] 齐峰, 樊自拴, 孙冬柏, 等. 新型热障涂层材料镁基六铝酸镧喷涂粉末的制备[J]. 材料工程, 2006, (7):14-18. QI F, FANG Z S, SUN D B, et al. Preparation of LaMgAl11O19 spray powder—a new thermal barrier coatings material[J]. Journal of Materials Engineering, 2006, (7):14-18.
[24] LIU H Z, LIU Z G, OUYANG J H, et al. Thermo-optical properties of LaMg1-xNixAl11O19(0≤x≤1) hexaaluminates for metallic thermal protection system[J]. Materials Letters, 2011, 65(17):2614-2617.
[25] 姜斌, 房明浩, 黄朝晖, 等.Gd3+掺杂La1-xGdxMgAl11O19(x=0~1)陶瓷的制备及热学性能[J]. 硅酸盐学报, 2010, 38(7):1263-1267. JIANG B, FANG M H, HUANG C H, et al. Preparation of Gd3+-doped La1-xGdxMgAl11O19(x=0-1) ceramics and its thermal properties[J]. Journal of the Chinese Ceramic Society, 2010, 38(7):1263-1267.
[26] CHEN X L, ZHANG Y F, ZHONG X H, et al. Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure[J]. Journal of the European Ceramic Society, 2010, 30(7):1649-1657.
[27] BANSAL N P, ZHU D M. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2008, 202(12):2698-2703.
[28] ZHANG J F, ZHONG X H, CHENG Y L, et al. Thermal-shock resistance of LnMgAl11O19(Ln = La, Nd, Sm, Gd) with magnetoplumbite structure[J]. Journal of Alloys and Compounds, 2009, 482(1-2):376-381.
[29] WANG Y H, LIU Z G, OUYANG J H, et al. Preparation and thermophysical properties of LaMgAl11O19-Yb3Al5O12 ceramic composites[J]. Ceramics International, 2011, 37(7):2489-2493.
[30] GADOW R, LISCHKA M. Lanthanum thermal barrier coatings for gas turbine application-materials and process development[J]. Surface and Coatings Technology, 2002, 151-152:392-399.
[31] FRIEDRICH C, GADOW R, SCHIRMER T. Lanthanum hexaaluminate-a new material for atmospheric plasma spraying of advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2001, 10(4):592-598.
[32] WANG Y H, OUYANG J H, LIU Z G. Preparation and thermo-physical properties of La1-xNdxMgAl11O19(x = 0, 0.1, 0.2) ceramics[J]. Journal of Alloys and Compounds, 2009, 485(1-2):734-738.
[33] JIANG B, FANG M H, HUANG Z H, et al.Mechanical and thermal properties of LaMgAl11O19[J].Materials Research Bulletin, 2010, 45(10):1506-1508.
[34] WANG Y H, OUYANG J H, LIU Z G, et al.Influence of dysprosium oxide doping on thermophysical properties of LaMgAl11-O19 ceramics[J]. Materials & Design, 2010, 31(7):3353-3357.
[35] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
[36] MARTENA M, BOTTO D, FINO P, et al. Modelling of TBC system failure: stress distribution as a function of TGO thickness and thermal expansion mismatch[J]. Engineering Failure Analysis, 2006, 13(3):409-426.
[37] HE M Y, HUTCHINSON J W, EVANS A G. Mechanics based scaling laws for the durability of thermal barrier coating[J]. Progress in Materials Science, 2001, 46(3-4):249-271.
[38] RABIEI A, EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2006, 48(15):3963-3976.
[39] AKTAA J, SFAR K, MUNZ D. Assessment o f TBC systems failure mechanisms using a fracture mechanics approach[J]. Acta Materialia, 2005, 53(16):4399-4413.
[40] TRUNOVA O, BECK T, HERZOG R, et al. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines-part I: experiments[J]. Surface and Coatings Technology, 2008, 202(20):5027-5032.
[41] STRANGMAN T, RAYBOULD D, JAMEEL A, et al. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine air foils[J]. Surface and Coatings Technology, 2007, 202(4-7):658-664.
[42] GUO H B, GONG S K, KHOR K A, et al. Effect of thermal exposure on the microstructure and properties of EB-PVD gradient thermal barrier coatings[J]. Surface and Coatings Technology, 2003, 168(1):23-29.
[43] DEMASI-MARCIN J T, GUPTA D K. Protective coatings in the gas turbine engine[J]. Surface and Coatings Technology, 1994, 68-69:1-9.
[44] HAYNES J A, RIGNEY E D, FERBER M K. Oxidation and degradation of a plasma-sprayed thermal barrier coating system[J]. Surface and Coatings Technology, 1996, 86-87:102.
[45] NIRANATLUMPONG P, PONTON C B, EVANS H E. The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings[J]. Oxidation of Metals, 2000, 53(3/4):241.
[46] HAYNES J A. Potential influences of bond coat impurities and void growth on premature failure of EB-PVD TBCs[J]. Scripta Materialia, 2001, 44(7):1147-1152.
[47] RABIEI A, EVENS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2000, 48(15):3963-3976.
[48] THURN G, SCHEIDER G A, BAHR H A. Toughness anisotropy and damage behavior of plasma sprayed ZrO2 thermal barrier coatings[J]. Surface and Coatings Technology, 2000, 123(2-3):147-158.
[49] 李吉皎, 房明浩, 黄赛芳, 等. LaMgAl11O19加入对8YSZ材料力学性能的影响[J]. 人工晶体学报, 2011, 4(1):193-196. LI J J, FANG M H, HUANG S F, et al. Effects of LaMgAl11-O19 addition on the mechanical properties of 8YSZ materials[J]. Journal of Synthetic Crystals, 2011, 4(1):193-196.
[50] CHEN X L, ZHAO Y, FAN X Z, et al. Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems[J]. Surface and Coatings Technology, 2011, 205(10):3293-3300.
[51] MA W, GONG S K, LI H F, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Surface and Coatings Technology, 2008, 202(12):2704-2708.
[52] KHOR K A, DONG Z L, GU Y W. Plasma sprayed functionally graded thermal barrier coatings[J]. Materials Letters, 1999, 38(6):437-444.
[53] ZHAI C S, WANG J, LI F, et al. Thermal shock properties and failure mechanism of plasma sprayed Al2O3/TiO2 nanocomposite coatings[J]. Ceramics International, 2005, 31(6):817-824.
[54] PORTINHA A, TEIXEIRA V, CARNEIRO J, et al. Characterization of thermal barrier coatings with a gradient in porosity[J]. Surface and Coatings Technology, 2005, 195(2-3):241-251.
[55] CHEN X L, GU L J, ZOU B L, et al.New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying[J]. Surface and Coatings Technology, 2012, 206(8-9):2265-2274.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[3] 曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
[4] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[5] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[6] 陈亚军, 王先超, 王付胜, 周剑, 吴悦雷. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.
[7] 陈亚军, 王先超, 王付胜, 刘波. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8): 68-75.
[8] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[9] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[10] 陈永星, 朱胜, 王晓明, 杜文博, 张垚. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138.
[11] 陈文龙, 刘敏, 张吉阜, 宋进兵. 燃气热循环下7YSZ热障涂层的微结构演变与阻抗谱特征[J]. 材料工程, 2017, 45(10): 79-87.
[12] 陈明慧, 朱红梅, 王新林. 激光熔覆制备金属表面非晶涂层研究进展[J]. 材料工程, 2017, 45(1): 120-128.
[13] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[14] 李佩桓, 张勇, 王涛, 张亚洲, 李钊, 贾崇林, 曲选辉. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129.
[15] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn