Abstract:High-cycle fatigue damage process of AZ31B magnesium alloy at room temperature was studied based on thermographic technology. An infrared-thermography camera was used to investigate the temperature evolution on the surface of material during fatigue experiments. Results show that the temperature evolution mainly undergoes five stages under fatigue loading: an initial increase, steep reduces, steady-state, an abrupt increase and final drop (stage Ⅴ). Theoretical model combining the thermoelastic, inelastic, and heat-transfer effects will be formulated to explain the temperature profiles observed during fatigue. The relative error of fatigue limits between the experimental result (108MPa) and the predicted result (113MPa) is 4.8%. ΔTmax-N curve was proposed to predict the fatigue life based on the temperature evolution during the fatigue experiments. The fatigue fracture and the fatigue life will be predicted by maximum temperature rise of first stage.
王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
WANG Kai, YAN Zhi-feng, WANG Wen-xian, ZHANG Hong-xia, PEI Fei-fei. Temperature Evolution and Fatigue Properties Prediction for High Cycle Fatigue of Magnesium Alloy Under Alternate Loading. Journal of Materials Engineering, 2014, 0(1): 85-89.
[1] 陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005.1-3.
[2] 熊缨, 程利霞.挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12):1446-1452.XIONG Y, CHENG L X. Multial fatigue life prediction for extruded AZ31B magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 48(12):1446-1452.
[3] 郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217-227.GUO X L, WANG X G. Overview on the thermographic method for fatigue research[J]. Advances in Mechanics, 2009, 39(2): 217-227.
[4] ROSA G LA, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22 (1): 65-73.
[5] LUONG M P. Infrared thermographic scanning of fatigue in metals[J]. Nuclear Engineering Design, 1995, 158(223): 363-368.
[6] 刘浩, 赵军, 丁桦. 疲劳过程中生热机理的实验探讨[J]. 实验力学, 2008, 23(1): 1-8.LIU H, ZHAO J, DING H. Experimental study on heat production mechanism during fatigue process[J]. Journal of Experimental Mechanics, 2008, 23(1):1-8.
[7] YAN Z F, ZHANG H X, WANG W X, et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1942-1948.
[8] JIANG L, WANG H, LIAW P K, et al. Temperature evolution and life prediction in fatigue of superalloys[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 839-848.
[9] 李娜. 基于能量耗散理论的疲劳试验研究. 西安: 西北工业大学, 2006.
[10] 王晓钢. 基于热像法的寿命预测与疲劳分析. 大连: 大连理工大学, 2009.
[11] RISITANO A, RISITANO G. Cumulative damage evaluation of steel using infrared thermography[J]. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-90.
[12] FAN J L, GUO X L, WU C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering:A, 2011, 528(29-30): 8417-8427.
[13] 闫志峰, 张红霞, 王文先, 等. 红外热成像法预测镁合金的疲劳性能[J]. 机械工程材料, 2012, 36(2):72-75. YAN Z F, ZHANG H X, WANG W X, et al. Infrared thermography technology predicting fatigue property of AZ31B magnesium alloy[J]. Materials for Mechanical Engineering, 2012, 36(2):72-75.
[14] RANC N, WAGNER D, PARIS P C. Study of thermal effects associated with crack propagation during very high cycle fatigue tests[J]. Acta Materialia, 2008, 56(15): 4012-4021.
[15] UMMENHOFER T, MEDGENBERG J. On the use of infrared thermography for the analysis of fatigue damage processes in welded joints[J]. International Journal of Fatigue, 2009, 31 (1): 130-137.
[16] CUR F, CURTI G, SESANA R. A new iteration method for the thermographic determination of fatigue limit in steels[J]. International Journal of Fatigue, 2005, 27(4): 453-459.
[17] YANG B, LIAW P K, MORRISON M, et al. Temperature evolution during fatigue damage[J]. Intermetallics, 2005, 13(3-4): 419-428.
[18] PASTOR M L, BALANDRAUD X, GR?DIAC M, et al. Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading[J]. Infrared Physics & Technology, 2008, 51(6): 505-515.