Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (1): 85-89    DOI: 10.3969/j.issn.1001-4381.2014.01.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
循环载荷作用下镁合金温度演化及高周疲劳性能预测
王凯, 闫志峰, 王文先, 张红霞, 裴飞飞
太原理工大学 材料科学与工程学院, 太原 030024
Temperature Evolution and Fatigue Properties Prediction for High Cycle Fatigue of Magnesium Alloy Under Alternate Loading
WANG Kai, YAN Zhi-feng, WANG Wen-xian, ZHANG Hong-xia, PEI Fei-fei
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(2230 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于红外热像法对AZ31B镁合金板材室温下的高周疲劳性能进行了研究。使用红外热成像仪测量整个疲劳过程中试件表面温度变化。结果表明:镁合金疲劳加载过程中的温度变化分为初始温度增加、温度降低、温度恒定、温度快速上升、温度最后下降5个部分。采用基于热传导、热弹性和非弹性效应的理论模型解释了疲劳加载过程中的温度变化。红外热像法预测的AZ31B镁合金疲劳极限113MPa与实验结果108MPa相对误差约为4.8%。基于镁合金表面温度的变化,提出了ΔTmax-N曲线预测疲劳寿命的方法,即通过测量阶段Ⅰ温升最大值预测镁合金的疲劳断裂,并计算其疲劳寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凯
闫志峰
王文先
张红霞
裴飞飞
关键词 AZ31B镁合金红外热像法温度演化疲劳性能    
Abstract:High-cycle fatigue damage process of AZ31B magnesium alloy at room temperature was studied based on thermographic technology. An infrared-thermography camera was used to investigate the temperature evolution on the surface of material during fatigue experiments. Results show that the temperature evolution mainly undergoes five stages under fatigue loading: an initial increase, steep reduces, steady-state, an abrupt increase and final drop (stage Ⅴ). Theoretical model combining the thermoelastic, inelastic, and heat-transfer effects will be formulated to explain the temperature profiles observed during fatigue. The relative error of fatigue limits between the experimental result (108MPa) and the predicted result (113MPa) is 4.8%. ΔTmax-N curve was proposed to predict the fatigue life based on the temperature evolution during the fatigue experiments. The fatigue fracture and the fatigue life will be predicted by maximum temperature rise of first stage.
Key wordsAZ31B magnesium alloy    thermographic technology    temperature evolution    fatigue property
收稿日期: 2012-08-07      出版日期: 2014-01-20
中图分类号:  TG113.25  
  TG146.2+2  
基金资助:国家自然科学基金资助项目(51175364);山西省自然科学基金资助项目(2013011014-3)
通讯作者: 王文先(1963- ),男,教授,博导,主要从事材料连接及界面行为研究,联系地址:山西省太原市迎泽西大街79号太原理工大学材料科学与工程学院材料加工系502室(030024)     E-mail: wwx960@126.com
作者简介: 王凯(1989- ),女,硕士研究生,主要从事金属材料失效及安全评定,材料连接及界面行为研究,联系地址:山西省太原市迎泽西大街79号太原理工大学材料科学与工程学院(030024),E-mail:wangkai19890908@hotmail.com
引用本文:   
王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
WANG Kai, YAN Zhi-feng, WANG Wen-xian, ZHANG Hong-xia, PEI Fei-fei. Temperature Evolution and Fatigue Properties Prediction for High Cycle Fatigue of Magnesium Alloy Under Alternate Loading. Journal of Materials Engineering, 2014, 0(1): 85-89.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2014.01.016      或      http://jme.biam.ac.cn/CN/Y2014/V0/I1/85
[1] 陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005.1-3.
[2] 熊缨, 程利霞.挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12):1446-1452.XIONG Y, CHENG L X. Multial fatigue life prediction for extruded AZ31B magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 48(12):1446-1452.
[3] 郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217-227.GUO X L, WANG X G. Overview on the thermographic method for fatigue research[J]. Advances in Mechanics, 2009, 39(2): 217-227.
[4] ROSA G LA, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22 (1): 65-73.
[5] LUONG M P. Infrared thermographic scanning of fatigue in metals[J]. Nuclear Engineering Design, 1995, 158(223): 363-368.
[6] 刘浩, 赵军, 丁桦. 疲劳过程中生热机理的实验探讨[J]. 实验力学, 2008, 23(1): 1-8.LIU H, ZHAO J, DING H. Experimental study on heat production mechanism during fatigue process[J]. Journal of Experimental Mechanics, 2008, 23(1):1-8.
[7] YAN Z F, ZHANG H X, WANG W X, et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1942-1948.
[8] JIANG L, WANG H, LIAW P K, et al. Temperature evolution and life prediction in fatigue of superalloys[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 839-848.
[9] 李娜. 基于能量耗散理论的疲劳试验研究. 西安: 西北工业大学, 2006.
[10] 王晓钢. 基于热像法的寿命预测与疲劳分析. 大连: 大连理工大学, 2009.
[11] RISITANO A, RISITANO G. Cumulative damage evaluation of steel using infrared thermography[J]. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-90.
[12] FAN J L, GUO X L, WU C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering:A, 2011, 528(29-30): 8417-8427.
[13] 闫志峰, 张红霞, 王文先, 等. 红外热成像法预测镁合金的疲劳性能[J]. 机械工程材料, 2012, 36(2):72-75. YAN Z F, ZHANG H X, WANG W X, et al. Infrared thermography technology predicting fatigue property of AZ31B magnesium alloy[J]. Materials for Mechanical Engineering, 2012, 36(2):72-75.
[14] RANC N, WAGNER D, PARIS P C. Study of thermal effects associated with crack propagation during very high cycle fatigue tests[J]. Acta Materialia, 2008, 56(15): 4012-4021.
[15] UMMENHOFER T, MEDGENBERG J. On the use of infrared thermography for the analysis of fatigue damage processes in welded joints[J]. International Journal of Fatigue, 2009, 31 (1): 130-137.
[16] CUR F, CURTI G, SESANA R. A new iteration method for the thermographic determination of fatigue limit in steels[J]. International Journal of Fatigue, 2005, 27(4): 453-459.
[17] YANG B, LIAW P K, MORRISON M, et al. Temperature evolution during fatigue damage[J]. Intermetallics, 2005, 13(3-4): 419-428.
[18] PASTOR M L, BALANDRAUD X, GR?DIAC M, et al. Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading[J]. Infrared Physics & Technology, 2008, 51(6): 505-515.
[1] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[2] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[3] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[4] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[5] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[6] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[7] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4): 84-89.
[8] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
[9] 樊俊铃, 郭强, 赵延广, 郭杏林. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8): 62-71.
[10] 张杰, 闫志峰, 王文先, 王志斌, 王凯, 张红霞, 张心保. 拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测[J]. 材料工程, 2015, 43(2): 79-84.
[11] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
[12] 刘培生, 马晓明. 高孔率泡沫金属材料疲劳表征模型及其实验研究[J]. 材料工程, 2012, 0(5): 47-53.
[13] 王欣, 高玉魁, 王强, 宋颖刚, 陆峰. 再次喷丸周期对TC18钛合金疲劳寿命的影响[J]. 材料工程, 2012, 0(2): 67-71.
[14] 初雅杰, 陈坚, 李晓泉, 吴申庆, 杨宗辉. 镁合金AZ31B钨极氩弧焊焊接过程热效率研究[J]. 材料工程, 2012, 0(12): 29-32,38.
[15] 孟杰, 金涛. 镍基单晶高温合金的再结晶[J]. 材料工程, 2011, 0(6): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn