Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (1): 90-96    DOI: 10.3969/j.issn.1001-4381.2014.01.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
一维锗酸盐纳米材料的合成及应用
裴立宅, 杨永, 杨连金, 裴银强, 谢义康, 蔡征宇
安徽工业大学 材料科学与工程学院 安徽省金属材料与加工重点实验室, 安徽 马鞍山 243002
Synthesis and Application of One-dimensional Germanate Nanomaterials
PEI Li-zhai, YANG Yong, YANG Lian-jin, PEI Yin-qiang, XIE Yi-kang, CAI Zheng-yu
Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China
全文: PDF(756 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 一维锗酸盐纳米材料具有良好的光催化、传感、电学及光学特性,在纳米光催化、纳米光学、纳米电学及传感领域具有很好的应用潜力。本文综述了一维锗酸盐纳米材料的合成、性能及应用的研究现状与最新进展情况,重点讨论了利用热蒸发、水热法、化学气相沉积等方法合成锗酸盐纳米线、纳米棒与纳米带以及一维锗酸盐纳米材料在磁性器件、电化学传感器、光催化及锂离子电池方面的应用进展情况,同时指出了一维锗酸盐纳米材料的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴立宅
杨永
杨连金
裴银强
谢义康
蔡征宇
关键词 一维锗酸盐纳米材料合成应用    
Abstract:One-dimensional germanate nanomaterials exhibit excellent potential applications in the fields of photocatalysis, nanoscale optical devices, nanoscale electron devices and sensors, owing to their good photocatalysis, sensing, electrical and optical properties. The recent research and development were reviewed on the synthesis, properties and application of the one-dimensional germanate nanomaterials. Especially, the development on the synthesis of germanate nanowires, nanorods and nanobelts by thermal evaporation, hydrothermal method and chemical vapor deposition, and the applications for the magnetic devices, electrochemical sensors, photocatalysis and lithium ion batteries were discussed. Finally, the possible development direction of the one-dimensional germanate nanomaterials was introduced.
Key wordsone-dimensional germanate nanomaterial    synthesis    application
收稿日期: 2012-06-27     
1:  TN305.3  
基金资助:安徽省科技厅自然科学基金资助项目(1208085QE98);安徽省教育厅自然科学研究重点资助项目(KJ2011A042,KJ2012Z038)
作者简介: 裴立宅(1977- ),男,教授,博士,主要从事低维纳米材料的研究工作,联系地址:安徽省马鞍山市安徽工业大学材料科学与工程学院(243002),E-mail:lzpei1977@163.com,lzpei@ahut.edu.cn
引用本文:   
裴立宅, 杨永, 杨连金, 裴银强, 谢义康, 蔡征宇. 一维锗酸盐纳米材料的合成及应用[J]. 材料工程, 2014, 0(1): 90-96.
PEI Li-zhai, YANG Yong, YANG Lian-jin, PEI Yin-qiang, XIE Yi-kang, CAI Zheng-yu. Synthesis and Application of One-dimensional Germanate Nanomaterials. Journal of Materials Engineering, 2014, 0(1): 90-96.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.3969/j.issn.1001-4381.2014.01.017      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I1/90
[1] RACKAUSKAS S, NASIBULIN A G, JIANG H, et al. A novel method for metal oxide nanowire synthesis[J]. Nanotechnology, 2009, 20(16):165603.
[2] LI J, KONG A G, WANG W J, et al. In-situ oxidation of block copolymer for producing copper oxalate or copper oxide nanowires in mesoporous channels[J]. Journal of Solid State Chemistry, 2009, 182(10):2801-2805.
[3] LIN L W, TANG Y H, PEI L Z, et al. Smooth silica nanowires under supercritically hydrothermal conditions[J]. Journal of Non-Crystal Solids, 2007, 353(2):159-163.
[4] KIM S S, GABRIEL N T, SONG W B, et al. Encapsulation of low-refractive-index SiO2 nanorods by Al2O3 with atomic layer deposition[J]. Optical Express, 2007, 15(24):16285-16291.
[5] FAN X, MENG X M, ZHANG X H, et al. Template fabrication of SiO2 nanotubes[J]. Applied Physics Letters, 2007, 90(10):103114.
[6] SU Y, LIANG X M, LI S, et al. Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays[J]. Materials Letters, 2008, 62(6-7):1010-1013.
[7] JIANG Z, XIE T, WANG G Z, et al. GeO2 nanotubes and nanorods synthesized by vapor phase reactions[J]. Materials Letters, 2005, 59(4):416-419.
[8] WANG Y W, ZHANG L D, WANG G Z, et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties[J]. Journal of Crystal Growth, 2002, 234(1): 171-175.
[9] GAO Y J, ZHANG W C, XU X L, et al. Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics[J]. Applied Surface Science, 2008, 255(5):1982-1987.
[10] MENSAH S L, KAYASTHA V K, IVANOV I N, et al. Formation of single crystalline ZnO nanotubes without catalysts and templates[J]. Applied Physics Letters, 2007, 90(11):113108.
[11] ZHANG F, BEI F L, CAO J M, et al. The preparation of CdO nanowires from solid-state transformation of a layered metal-organic framework[J]. Journal of Solid State Chemistry, 2008, 181(1):143-149.
[12] YAN C Y, LEE P S. Synthesis and structure characterization of ternary Zn2GeO4 nanowires by chemical vapour transport[J]. Journal of Physics and Chemistry C, 2009, 113(32):14135-14139.
[13] YAN C Y, SEE L P. Synthesis of one-dimensional (1D) Ge-based ternary oxide nanostructures. Nanoelectronics Conference (INEC), 2010 3rd International.Hong Kong, China:IEEE Press, 2010.408-409.
[14] HUANG J H, WANG X C, HOU Y D, et al. Degradation of benzene over a zinc germanate photocatalyst under ambient conditions[J]. Environmental Science and Technology, 2008, 42(19):7387-7391.
[15] TSAI M Y, YU C Y, WANG C C, et al. Water-driven formation of luminescent Zn2GeO4 nanorods from Zn-containing Ge nanoparticles[J]. Crystal Growth and Design, 2008, 8(7):2264-2269.
[16] PEI L Z, ZHAO H S, TAN W, et al. Low temperature growth and characterizations of single crystalline CuGeO3 nanowires[J]. Cryst Eng Comm, 2009, 11(8):1696-1701.
[17] SONG R Q, XU A W, YU S H. Layered copper metagermanate nanobelts: hydrothermal synthesis, structure, and magnetic properties[J]. Journal of the American Chemistry Society, 2007, 129(14):4152-4153.
[18] 裴立宅, 赵海生. 锗酸铜纳米线及其制备方法. 中国专利: ZL200810235763.9, 2011-11-09.
[19] PEI L Z, ZHAO H S, TAN W, et al. A simple route to the synthesis of single crystalline copper metagermanate nanowires[J]. Materials Characterization, 2009, 60(12):1602-1606.
[20] LI D K, PEI L Z, YANG Y, et al. Controlled growth of copper germanate nanoflowers[J]. Journal of Advanced Microscopy Research, 2011, 6(2):97-103.
[21] PEI L Z, WANG J F, YANG L J, et al. Preparation of copper germanate nanowires with good electrochemical sensing properties[J]. Crystal Research and Technology, 2011, 46(1):103-112.
[22] 杨连金. 锗酸铜纳米线的合成及在电化学传感中的应用.马鞍山:安徽工业大学, 2011.
[23] PEI L Z, YANG L J, YANG Y, et al. Large-scale synthesis and growth conditions dependence on the formation of CuGeO3 nanowires[J]. Materials Chemistry and Physics, 2011, 130(1-2):104-112.
[24] PEI L Z, YANG Y, YANG L J, et al. Low temperature synthesis of CuGeO3 nanoflowers from n-hepane solution[J]. International Journal of Materials Research, 2011, 102(11):1391-1396.
[25] YAN C Y, SINGH N D, LEE P S. Morphology control of indium germanate nanowires, nanoribbons, and hierarchical nanostructures[J]. Crystal Growth and Design, 2009, 9(1):3697-3701.
[26] SU Y, MENG X, LI S, et al. Synthesis of chainlike In2Ge2O7/amorphous GeO2 core/shell nanocables and their luminescence[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(12):4365-4368.
[27] LI L, SU Y, CHEN Y Q, et al. Synthesis and photoluminescence properties of hierarchical zinc germanate nanostructures[J]. Advanced Science Letters, 2010, 3(1):1-5.
[28] TSAI M Y, YU C Y, PERNG T P. Synthesis and photoluminescence of amorphous Ca5Ge2O9 nanowires[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(12):6376-6380.
[29] PEI L Z, YANG Y, FAN C G, et al. Synthesis and characterizations of calcium germanate nanowires[J]. Cryst Eng Comm, 2011, 13(14):4658-4665.
[30] PEI L Z, PEI Y Q, YANG Y, et al. Ca2Ge7O16 nanowires grown from CaO and GeO2[J]. Materials Research, 2012, 15(1):90-96.
[31] TSAI M Y, PERNG T P. Synthesis and photoluminescence of amorphous strontium germanate nanowires. The 214th Electrochemical Society Meeting. Honolulu, HI, USA:The Electrochemical Society, 2008.12-17.
[32] WANG N, DING J, LI G C, et al. Synthesis and properties of PbGeO3 nanostructures[J]. Crystal Research and Technology, 2010, 45(3):316-320.
[33] PEI L Z, YANG Y, PEI Y Q, et al. Cd2Ge2O6 nanowires grown by a simple hydrothermal route[J]. Crystal Research and Technology, 2011, 46(5):480-484.
[34] PEI L Z, YANG Y, PEI Y Q, et al. Synthesis and microstructural control of flower-like cadmium germanate[J]. Materials Characterization, 2011, 62(11):1029-1035.
[35] BOPPANA V B R, HOULD N D, LOBO R F. Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials[J]. Journal of Solid State Chemistry, 2011, 184(5):1054-1062.
[36] YAN S C, WAN L J, LI Z S, et al. Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2[J]. Chemistry Communications, 2011, 47(19):5632-5634.
[37] PEI L Z, WANG J F, TAN W, et al. A convenient synthesis route to the zinc metagermanate nanorods[J]. Current Nanoscience, 2009, 5(4):470-473.
[38] ZHANG L, CAO X F, MA Y L, et al. Microwave-assisted preparation and photocatalytic properties of Zn2GeO4 nanorod bundles[J]. Cryst Eng Comm, 2010, 12(10):3201-3206.
[39] PEI L Z, YANG Y, YANG L J, et al. Large-scale synthesis and roles of growth conditions on the formation of Zn2GeO4 nanorods[J]. Solid State Communications, 2011, 151(14-15):1036-1041.
[40] HUANG J H, DING K N, WANG X C, et al. Nanostructuring cadmium germanate catalysts for photocatalytic oxidation of benzene at ambient conditions[J]. Langmuir, 2009, 25(14):8313-8319.
[41] ZHANG L, CAO X F, CHEN X T, et al. Fast preparation and growth mechanism of erythrocyte-like Cd2Ge2O6 superstructures via a microwave-hydrothermal process[J].Cryst Eng Comm, 2011, 13(7):2464-2471.
[42] PEI L Z, YANG Y, YUAN C Z, et al. A simple route to synthesize manganese germanate nanorods[J]. Materials Characterizations, 2011, 62(6):555-562.
[43] SU Y, LI S, XU L, et al. Synthesis and photoluminescence properties of In2Ge2O7 nanobelts[J]. Nanotechnology, 2006, 17(24):6007-6010.
[44] ATSRIKU C, BENZ C C, SCOTT G K, et al. Quantification of cysteine oxidation in human estrogen receptor by mass spectrometry[J]. Analytical Chemistry, 2007, 79(8):3083-3090.
[45] THEVIS M, LOO R R O, LOO J A. In-gel derivatization of proteins for cysteine-specific cleavages and their analysis by mass spectrometry[J]. Journal of Proteome Research, 2003, 2(2):163-172.
[46] BALLIN N Z. Estimation of whey protein in casein coprecipitate and milk powder by high-performance liquid chromatography quantification of cysteine[J]. Journal of Agric Food Chemistry, 2006, 54(12):4131-4135.
[47] DONG Y P, PEI L Z, CHU X F, et al. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode[J].Electrochimica Acta, 2010, 55(18):5135-5141.
[48] LAN Q, ZHANG L, LI G, et al. Hematotoxicity in workers exposed to low levels of benzene[J]. Science, 2004, 306(5702):1774-1776.
[49] LIU Q, ZHOU Y, KOU J H, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel[J]. Journal of the American Chemistry Society, 2010, 132(41):14385-14387.
[50] FENG J K, LAI M O, LU L. Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery[J]. Electrochemistry Communications, 2011, 13(3):287-289.
[51] FENG J K, LAI M O, LU L. Lithium storage capability of CuGeO3 nanorods[J].Materials Research Bulletin, 2012, 47(7):1693-1696.
[1] 喇培清, 欧玉静, 韩少博, 卢学峰, 魏玉鹏. NaCl加入量对自蔓延高温燃烧合成法大规模制备的超细二硼化钛粉体性能的影响[J]. 材料工程, 2015, 43(7): 14-20.
[2] 王林鹏, 马玉洁, 周学华, 刘云, 武瑞东. 碳点的制备与应用研究进展[J]. 材料工程, 2015, 43(5): 101-112.
[3] 杨文彬, 张丽, 刘菁伟, 刘欢锐, 唐兵华. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3): 91-97.
[4] 薛伟江, 于娟, 丁滔, 张寿春, 王继刚. 基于高能微波真空辐射快速制备石墨烯[J]. 材料工程, 2014, 0(7): 39-43.
[5] 张瑞英, 陈素娟, 史志铭, 张连凤. Mg对原位合成TiC-Al2O3/Al复合材料组织与耐磨性的影响[J]. 材料工程, 2014, 0(10): 65-70.
[6] 马烽, 秦岩, 陆丰艳, 王晓燕. 棕榈酸-十六醇/二氧化硅相变储能材料的低热固相合成与表征[J]. 材料工程, 2014, 0(10): 71-74.
[7] 梁成浩, 陈婉, 黄乃宝. 不锈钢载波氧化膜/聚噻吩复合膜的制备及耐蚀性能研究[J]. 材料工程, 2013, 0(1): 73-78.
[8] 李恩重, 郭伟玲, 王海斗, 徐滨士. 聚醚醚酮摩擦学性能改性及其应用研究进展[J]. 材料工程, 2013, 0(1): 91-96.
[9] 陆韬, 潘冶, 董薰. 燃烧合成Co(Ti)-Al2O3金属陶瓷的组织与性能[J]. 材料工程, 2012, 0(3): 28-31.
[10] 李玲, 田晋丽, 陈剑楠. 海因环氧树脂/HHPA体系的制备与性能[J]. 材料工程, 2012, 0(3): 52-55.
[11] 王海庆, 王成国, 庄光山, 孙毅, 姚永强, 郑树伟. 混杂纤维盘式制动闸片材料的装车实验研究[J]. 材料工程, 2011, 0(7): 56-60.
[12] 房卫萍, 陈沦, 史耀武, 虞文军, 毛智勇, 唐振云. 损伤容限钛合金的研究进展及应用现状[J]. 材料工程, 2010, 0(9): 95-98.
[13] 师华, 陆峰, 熊家锦, 徐永祥, 王菁. N,N-二己基对苯二胺的合成 [J]. 材料工程, 2010, 0(3): 93-95.
[14] 吕臣敬, 田秀淑, 韩玉芳. 原位合成含有Al2O3晶须Al2O3/Ti-Al复合材料机理的研究[J]. 材料工程, 2010, 0(12): 30-34.
[15] 周旭, 吴江渝, 李妍, 姜铁坤. 聚酰胺-胺树形分子核的微波合成[J]. 材料工程, 2010, 0(11): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn