Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (2): 65-69    DOI: 10.3969/j.issn.1001-4381.2014.02.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
含水量及相关散射对气凝胶辐射传热的影响
段远源1, 于海童1, 王晓东2, 赵俊杰1
1. 清华大学 热科学与动力工程教育部重点实验室, 北京 100084;
2. 华北电力大学 新能源与可再生能源北京市重点实验室, 北京 102206
Influence of Water Content and Dependent Scattering on Radiation Properties of Aerogel
DUAN Yuan-yuan1, YU Hai-tong1, WANG Xiao-dong2, ZHAO Jun-jie1
1. Key Laboratory for Thermal Science and Power Engineering (Ministry of Education), Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
全文: PDF(1364 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 将分层颗粒的米氏散射理论应用于气凝胶体系,计算含水气凝胶的消光系数,并考虑气凝胶中的相关散射,使用几种已有模型对计算结果进行修正。计算结果与实验数据对比表明,考虑气凝胶含水对计算结果有所改进,而引入相关散射后计算结果改进不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段远源
于海童
王晓东
赵俊杰
关键词 气凝胶消光系数辐射热导率米氏散射相关散射    
Abstract:The coated sphere model of Mie's theory was used to calculate the extinction coefficients of aerogel containing water. Dependent scattering was taken into consideration with purpose of improving the results. Finally, the temperature-related radiative conductivity was calculated from the Rosseland average of extinction coefficients. The best prediction comes from independent scattering of coated sphere model, which offers more refined extinction coefficient calculation and slightly better prediction of radiative conductivity than the original Mie's theory. Existing dependent scattering theories help little to improve calculation.
Key wordsaerogel    extinction coefficient    radiation thermal conductivity    Mie’s scattering    dependent scattering
收稿日期: 2012-05-15      出版日期: 2014-02-20
中图分类号:  TB303  
基金资助:国家自然科学基金(21176133,51321002)
作者简介: 段远源(1971—),男,教授,工学博士,博士生导师,现主要从事热力学、流体热物性、能量系统优化的研究,联系地址:北京市清华大学热能工程系(100084),E-mail:yyduan@tsinghua.edu.cn
引用本文:   
段远源, 于海童, 王晓东, 赵俊杰. 含水量及相关散射对气凝胶辐射传热的影响[J]. 材料工程, 2014, 0(2): 65-69.
DUAN Yuan-yuan, YU Hai-tong, WANG Xiao-dong, ZHAO Jun-jie. Influence of Water Content and Dependent Scattering on Radiation Properties of Aerogel. Journal of Materials Engineering, 2014, 0(2): 65-69.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2014.02.013      或      http://jme.biam.ac.cn/CN/Y2014/V0/I2/65
[1] AEGERTER M A, LEVENTIS N, KOEBEL M M. Aerogels Handbook[M]. New York: Springer, 2011.
[2] 吕鹏鹏,赵海雷,刘欣,等.常压干燥制备SiO2气凝胶的研究[J].材料工程,2012,(4):20-26.LU Peng-peng,ZHAO Hai-lei,LIU Xin,et al.Preparation of silica aerogel via ambient pressure drying[J].Journal of Materials Engineering,2012,(4):22-26.
[3] 陆规,段远源,王晓东. 微米尺度结构特征对纳米材料热导率的影响[J]. 宇航材料工艺, 2011,41(1): 29-33.LU G, DUAN Y Y, WANG X D. Effect of functional additives and non-uniform structure on insulation performance of nanoporous insulation materials[J]. Aerospace Materials and Technology, 2011,41(1): 29-33.
[4] 陆规,王晓东,段远源. 纳米孔隔热材料等效热导率的计算[J]. 宇航材料工艺,2011,41(1): 1-6.LU G, WANG X D, DUAN Y Y. Calculation method of effective thermal conductivity for nanoporous insulation material[J]. Aerospace Materials and Technology, 2011,41(1): 1-6.
[5] ZHAO J J, DUAN Y Y, WANG X D, et al. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5196-5204.
[6] 段远源,林杰,赵俊杰,等. 二氧化硅气凝胶的气相热导率模型分析[J]. 化工学报,2012,(增刊1): 54-58.DUAN Y Y, LIN J, ZHAO J J, et al. Analysis of the gaseous thermal conductivity models for silica aerogels[J]. CIESC Journal, 2012,(Suppl 1): 54-58.
[7] 李雄威, 段远源, 王晓东. SiO2气凝胶高温结构变化及其对隔热性能的影响[J]. 热科学与技术, 2011, 10(3):189-193.LI X W, DUAN Y Y, WANG X D. Impacts of structural changes of SiO2 aerogel under high temperature on its insulation performance[J]. Journal of Thermal Science and Technology, 2011, 10(3):189-193.
[8] MISHCHENKO M I, TRAVIS L D, LACIS A A. Scattering, absorption and emission of light by small particles[M]. New York: Cambridge University Press, 2002.
[9] MACKOWSKI D W, MISHCHENKO M I. A multiple sphere T-matrix Fortran code for use on parallel computer clusters[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(13SI): 2182-2192.
[10] LALLICH S, ENGUEHARD F, BAILLIS D. Experimental determination and modeling of the radiative properties of silica nanoporous matrices[J]. Journal of Heat Transfer, 2009, 131: 82701-82712.
[11] ENGUEHARD F. Multi-scale modeling of radiation heat transfer through nanoporous superinsulating materials[J]. International Journal of Thermophysics, 2007, 28(5): 1693-1717.
[12] COQUARD R, BAILLIS D, GRIGOROVA V, et al. Modeling of the conductive heat transfer through nano-structured porous silica materials[J]. Journal of Non-Crystalline Solids, 2013, 363(1): 103-115.
[13] PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1985.
[14] KAMDEM H T T, BAILLIS D D. Reduced models for radiative heat transfer analysis through anisotropic fibrous medium[J]. Journal of Heat Transfer,2010, 132(7): 72703-72708.
[15] HSIEH C K, SU K C. Thermal radiative properties of glass from 0.32 μm to 206 μm[J]. Solar Energy,1979, 22(1): 37-43.
[16] BOHREN C F, HUFFMAN D R. Absorption and Scattering of Light by Small Particles[M]. New York: Wiley, 1983.
[17] ZENG S Q, GREIF R, STEVENS P, et al. Effective optical constants n and k and extinction coefficient of silica aerogel[J]. Journal of Materials Research, 1996, 11(3): 687-693.
[18] HALE G M, QUERRY M R. Optical constants of water in the 200 nm to 200 μm wavelength region[J]. Applied Optics,1973, 12(3): 555-563.
[19] LU X, ARDUINISCHUSTER M C, KUHN J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science,1992, 255(5047): 971-972.
[20] TIEN C, DROLEN B L. Thermal radiation in particulate media with dependent and independent scattering[J]. Annual Review of Numerical Fluid Mechanics and Heat Transfer, 1987, 1(1): 1-32.
[21] DROLEN B L, TIEN C L. Independent and dependent scattering in packed-sphere systems[J]. Journal of Thermophysics and Heat Transfer, 1987, 1(1): 63-68.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 冯志海, 师建军, 孔磊, 罗丽娟, 梁馨, 匡松连. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24.
[3] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
[4] 刘洪丽, 邓青沂, 褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2): 22-26.
[5] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
[6] 余煜玺, 朱孟伟. 高球形度、高比表面积SiO2/TiO2气凝胶小球的制备和表征[J]. 材料工程, 2017, 45(2): 7-11.
[7] 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43(8): 31-36.
[8] 房光强, 沈登雄, 栗付平, 李华, 杨海霞, 刘金刚, 杨士勇. 聚酰亚胺/SiO2纳米复合抗原子氧气凝胶的合成与性能[J]. 材料工程, 2015, 43(12): 17-23.
[9] 吕鹏鹏, 赵海雷, 刘欣, 李兴旺. 常压干燥制备SiO2气凝胶的研究[J]. 材料工程, 2012, 0(4): 22-26.
[10] 罗凤钻, 吴国友, 邵再东, 程璇, 余煜玺. 常压干燥制备疏水SiO2气凝胶的影响因素分析[J]. 材料工程, 2012, 0(3): 32-37.
[11] 张明灿, 曾人杰. 注浆成型-常温常压干燥制备隔热块体材料[J]. 材料工程, 2011, 0(9): 33-38.
[12] 吴亚迪, 崔升, 韩桂芳, 沈晓冬. 疏水SiO2气凝胶的制备研究[J]. 材料工程, 2010, 0(6): 16-19,25.
[13] 陈一民, 许静, 谢凯, 肖加余. Cu/SiO2纳米复合气凝胶的制备与表征[J]. 材料工程, 2005, 0(8): 43-46.
[14] 邓忠生, 魏建东, 王珏, 沈军, 周斌, 陈玲燕. SiO2气凝胶结构及其热学特性研究[J]. 材料工程, 1999, 0(12): 23-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn