Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (4): 1-6    DOI: 10.3969/j.issn.1001-4381.2014.04.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
石墨烯增强铝基纳米复合材料的研究
燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙
北京航空材料研究院 烯合金研究中心, 北京 100095
Research of Graphene-reinforced Aluminum Matrix Nanocomposites
YAN Shao-jiu, YANG Cheng, HONG Qi-hu, CHEN Jun-zhou, LIU Da-bo, DAI Sheng-long
Center of Graphene Reinforced Metal Matrix Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3277 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球磨和粉末冶金方法成功制备出石墨烯增强铝基纳米复合材料,命名为铝基烯合金。首次发现石墨烯纳米片的添加在保持材料良好塑性的同时,显著提高了其强度。利用OM,SEM和TEM对铝基烯合金微观组织结构进行表征,并测试其拉伸性能。结果表明:石墨烯纳米片均匀分布在铝合金基体中,与基体形成良好的结合界面,且石墨烯纳米片与铝合金基体未发生化学反应,并保留了原始的纳米片结构;铝基烯合金中石墨烯纳米片含量为0.3%(质量分数)时,铝基烯合金的平均屈服强度和抗拉强度分别达到322MPa和454MPa,较未添加石墨烯纳米片的合金分别提高58%和25%,且伸长率略有提高。基于石墨烯纳米片特殊的二维褶皱结构,讨论铝基烯合金的增强增韧行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
燕绍九
杨程
洪起虎
陈军洲
刘大博
戴圣龙
关键词 石墨烯纳米片铝基纳米复合材料力学性能增强增韧行为    
Abstract:Graphene-reinforced aluminum matrix nanocomposites were successfully synthesized through ball milling and powder metallurgy. The tensile strength and yield strength of graphene-reinforced aluminum matrix nanocomposites are remarkably enhanced by adding graphene nanoflakes(GNFs). Importantly, the ductility properties are remained excellently, which is firstly found in the second phase reinforced metal matrix nanocomposites. The microstructures were observed by OM, SEM and TEM method. And the tensile properties were tested.The results show that graphene nanoflakes are effectively dispersed and well consolidate with aluminum matrix, however, chemical reactions are not observed. The original structured characteristics of graphene nanoflakes are preserved very well. The average tensile strength and yield strength of nanocomposite are 454MPa and 322MPa, respectively,which are 25% and 58% higher than the pristine aluminum alloy at a nanofiller mass fraction of 0.3%, while the ductility increases slightly. The relevant mechanisms of strengthening and toughening enhancement are discussed on the base of 2D and wrinkled structured properties of graphene nanoflakes.
Key wordsgraphene nanoflake    aluminum matrix nanocomposite    mechanical property    strengthening and toughening mechanism
收稿日期: 2014-03-17      出版日期: 2014-04-20
中图分类号:  TB383  
  TD875+.2  
作者简介: 燕绍九(1980- ),男,博士,工程师,主要从事纳米材料/磁性材料方面的研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com
引用本文:   
燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014, 0(4): 1-6.
YAN Shao-jiu, YANG Cheng, HONG Qi-hu, CHEN Jun-zhou, LIU Da-bo, DAI Sheng-long. Research of Graphene-reinforced Aluminum Matrix Nanocomposites. Journal of Materials Engineering, 2014, 0(4): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2014.04.001      或      http://jme.biam.ac.cn/CN/Y2014/V0/I4/1
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5695):666-669.
[2] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[3] 万勇, 马廷灿, 冯端华, 等. 石墨烯国际发展态势分析[J].科学观察,2010,5(3):25-33.WAN Yong,MA Yan-can,FENG Duan-hua,et al. International development trends analysis of graphene science research[J]. Science Focus,2010,5(3):25-33.
[4] RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano,2009,3(12):3884-3890.
[5] LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective rein- forcement of their nanocomposites[J].Adv Funct Mater,2009,19(14):2297-2302.
[6] LIU J, YAN H X, JIANG K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J]. Cerm Int,2013,39(6):6215-6221.
[7] SUN C, SONG M, WANG Z W, et al. Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites[J]. J Mater Eng Perform,2011,20(9):1606-1612.
[8] SONG M, HE Y H, FANG S F. Yield stress of SiC reinforced aluminum alloy composites[J]. J Mater Sci,2010,45(15):4097-4110.
[9] TOPCU I, GULSOY H O, KADIOGLU N, et al. Processing and mechanical properties of B4C reinforced Al matrix composites[J].J Alloys and Compd,2009,482(1-2):516-521.
[10] PIERARD N, FONSECA A, COLOMER J F, et al. Ball milling effect on the structure of single-wall carbon nanotubes[J]. Carbon,2004,42:1691-1697.
[11] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339.
[12] QIAN Y Q, VU A, SYMRL W, et al. Facile preparation and electrochemical properties of V2O5-graphene composite films as free-standing cathodes for rechargeable lithium batteries[J]. J Electrochem Soc,2012,159(8):1135-1140.
[13] MIRACLE D B. Metal matrix composites-from science to technological significance[J]. Composite Science and Technology,2005,65(15-16):2526-2540.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn