Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (4): 1-6    DOI: 10.3969/j.issn.1001-4381.2014.04.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
石墨烯增强铝基纳米复合材料的研究
燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙
北京航空材料研究院 烯合金研究中心, 北京 100095
Research of Graphene-reinforced Aluminum Matrix Nanocomposites
YAN Shao-jiu, YANG Cheng, HONG Qi-hu, CHEN Jun-zhou, LIU Da-bo, DAI Sheng-long
Center of Graphene Reinforced Metal Matrix Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3277 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球磨和粉末冶金方法成功制备出石墨烯增强铝基纳米复合材料,命名为铝基烯合金。首次发现石墨烯纳米片的添加在保持材料良好塑性的同时,显著提高了其强度。利用OM,SEM和TEM对铝基烯合金微观组织结构进行表征,并测试其拉伸性能。结果表明:石墨烯纳米片均匀分布在铝合金基体中,与基体形成良好的结合界面,且石墨烯纳米片与铝合金基体未发生化学反应,并保留了原始的纳米片结构;铝基烯合金中石墨烯纳米片含量为0.3%(质量分数)时,铝基烯合金的平均屈服强度和抗拉强度分别达到322MPa和454MPa,较未添加石墨烯纳米片的合金分别提高58%和25%,且伸长率略有提高。基于石墨烯纳米片特殊的二维褶皱结构,讨论铝基烯合金的增强增韧行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
燕绍九
杨程
洪起虎
陈军洲
刘大博
戴圣龙
关键词 石墨烯纳米片铝基纳米复合材料力学性能增强增韧行为    
Abstract:Graphene-reinforced aluminum matrix nanocomposites were successfully synthesized through ball milling and powder metallurgy. The tensile strength and yield strength of graphene-reinforced aluminum matrix nanocomposites are remarkably enhanced by adding graphene nanoflakes(GNFs). Importantly, the ductility properties are remained excellently, which is firstly found in the second phase reinforced metal matrix nanocomposites. The microstructures were observed by OM, SEM and TEM method. And the tensile properties were tested.The results show that graphene nanoflakes are effectively dispersed and well consolidate with aluminum matrix, however, chemical reactions are not observed. The original structured characteristics of graphene nanoflakes are preserved very well. The average tensile strength and yield strength of nanocomposite are 454MPa and 322MPa, respectively,which are 25% and 58% higher than the pristine aluminum alloy at a nanofiller mass fraction of 0.3%, while the ductility increases slightly. The relevant mechanisms of strengthening and toughening enhancement are discussed on the base of 2D and wrinkled structured properties of graphene nanoflakes.
Key wordsgraphene nanoflake    aluminum matrix nanocomposite    mechanical property    strengthening and toughening mechanism
收稿日期: 2014-03-17     
1:  TB383  
  TD875+.2  
作者简介: 燕绍九(1980- ),男,博士,工程师,主要从事纳米材料/磁性材料方面的研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com
引用本文:   
燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014, 0(4): 1-6.
YAN Shao-jiu, YANG Cheng, HONG Qi-hu, CHEN Jun-zhou, LIU Da-bo, DAI Sheng-long. Research of Graphene-reinforced Aluminum Matrix Nanocomposites. Journal of Materials Engineering, 2014, 0(4): 1-6.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.3969/j.issn.1001-4381.2014.04.001      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I4/1
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5695):666-669.
[2] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[3] 万勇, 马廷灿, 冯端华, 等. 石墨烯国际发展态势分析[J].科学观察,2010,5(3):25-33.WAN Yong,MA Yan-can,FENG Duan-hua,et al. International development trends analysis of graphene science research[J]. Science Focus,2010,5(3):25-33.
[4] RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano,2009,3(12):3884-3890.
[5] LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective rein- forcement of their nanocomposites[J].Adv Funct Mater,2009,19(14):2297-2302.
[6] LIU J, YAN H X, JIANG K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J]. Cerm Int,2013,39(6):6215-6221.
[7] SUN C, SONG M, WANG Z W, et al. Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites[J]. J Mater Eng Perform,2011,20(9):1606-1612.
[8] SONG M, HE Y H, FANG S F. Yield stress of SiC reinforced aluminum alloy composites[J]. J Mater Sci,2010,45(15):4097-4110.
[9] TOPCU I, GULSOY H O, KADIOGLU N, et al. Processing and mechanical properties of B4C reinforced Al matrix composites[J].J Alloys and Compd,2009,482(1-2):516-521.
[10] PIERARD N, FONSECA A, COLOMER J F, et al. Ball milling effect on the structure of single-wall carbon nanotubes[J]. Carbon,2004,42:1691-1697.
[11] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339.
[12] QIAN Y Q, VU A, SYMRL W, et al. Facile preparation and electrochemical properties of V2O5-graphene composite films as free-standing cathodes for rechargeable lithium batteries[J]. J Electrochem Soc,2012,159(8):1135-1140.
[13] MIRACLE D B. Metal matrix composites-from science to technological significance[J]. Composite Science and Technology,2005,65(15-16):2526-2540.
[1] 林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
[2] 李龙, 祝志超, 张心金, 刘会云. 利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J]. 材料工程, 2015, 43(7): 62-67.
[3] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[4] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[5] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[6] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[7] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[8] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[9] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[10] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[11] 王洁, 聂宝华, 蔡成, 张峥. 加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J]. 材料工程, 2015, 43(1): 82-88.
[12] 娄长胜, 芦馨, 金光, 高景龙, 张罡. 强流脉冲电子束表面处理对TiAlN涂层刀具的组织结构及性能的影响[J]. 材料工程, 2014, 0(8): 15-20.
[13] 王定刚, 肖程波, 宋尽霞, 李青, 余乾. 不同稀土元素添加量对K465合金微观组织与力学性能的影响[J]. 材料工程, 2014, 0(8): 46-50.
[14] 王晓博, 俞宏英, 关望, 孙冬柏. X52钢在普光气田服役条件下的CO2腐蚀行为[J]. 材料工程, 2014, 0(8): 72-78.
[15] 张丁非, 耿青梅, 杨绪盛, 余大亮, 潘复生. 新型复合挤压工艺中温度对AZ61组织和性能的影响[J]. 材料工程, 2014, 0(7): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn