Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (4): 7-12    DOI: 10.3969/j.issn.1001-4381.2014.04.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Al含量对Al-Fe-Si/Al原位复合材料的影响
赵龙志1,2, 焦宇1
1. 华东交通大学 机电工程学院, 南昌 330013;
2. 哈尔滨工程大学 超轻材料与表面技术教育部重点实验室, 哈尔滨 150001
Effect of Aluminum Content on Al-Fe-Si/Al In-situ Composites
ZHAO Long-zhi1,2, JIAO Yu1
1. School of Mechatronic Engineering, East China Jiaotong University, Nanchang 330013, China;
2. Key Laboratory of Super-light Materials & Surface Technology(Ministry of Education), Harbin Engineering University, Harbin 150001, China
全文: PDF(3013 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用粉末冶金瞬时液相烧结法制备Al-Fe-Si/Al原位复合材料。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析(EDS)以及M-2000型磨损试验机研究Al含量对原位复合材料的微观结构、硬度和耐磨性的影响。结果表明:随着Al含量的增加,粗大FeAl相消失,针状的金属间化合物增强体Al0.5FeSi0.5长大成短棒状。当Al质量分数为77%时,细小的短棒状Al0.5FeSi0.5增强相弥散分布在基体中,复合材料硬度HV具有最高值283.7,其硬度约是纯铝的8倍,铝硅合金的2.5倍;复合材料的耐磨性约为纯铝的6.6倍,铝硅合金的4.5倍;耐磨性能最佳,磨损率为0.3781%,磨损机制为磨粒磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵龙志
焦宇
关键词 瞬时液相烧结铝含量原位自生微观结构硬度耐磨性    
Abstract:The Al-Fe-Si/Al in-situ composite was prepared by the powder metallurgy transient liquid phase sintering method. The influence of Al content on microstructure, hardness and wear resistance of in-situ composites was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and M-2000 wear tester. The results show that the coarse FeAl phases disappear; the needle shape-like Al0.5FeSi0.5 intermetallic compound reinforcement grows into short bar when the content of aluminum increases. When the mass fraction of aluminum is 77%, the fine short-bar Al0.5FeSi0.5 reinforcement distributes meanly in the matrix, the hardness of composites has a peak value(283.7), which is 8 times that of pure aluminum and 2.5 times that of aluminum silicon alloy. The wear resistance is the best (wear rate is 0.3781%),which is 6.6 times that of pure aluminum and 4.5 times that of aluminum silicon alloy. The wear mechanism is mainly abrasive wear.
Key wordstransient liquid phase sintering    Al content    in-situ    microstructure    hardness    wear resistance
收稿日期: 2013-01-22     
1:  TB331  
基金资助:国家自然科学基金资助项目(51001047,51165008);江西省科技厅科研项目资助(20122BDH80021,2012BBE5001);江西省教育厅科研项目资助(GJJ12282,GJJ11020)
作者简介: 赵龙志(1977- ),男,博士,教授,主要从事金属基复合材料和激光成形方面研究工作,联系地址:江西省南昌市昌北经济技术开发区双港路808号华东交通大学机电工程学院(330013),E-mail:zhaolongzhi@163.com
引用本文:   
赵龙志, 焦宇. Al含量对Al-Fe-Si/Al原位复合材料的影响[J]. 材料工程, 2014, 0(4): 7-12.
ZHAO Long-zhi, JIAO Yu. Effect of Aluminum Content on Al-Fe-Si/Al In-situ Composites. Journal of Materials Engineering, 2014, 0(4): 7-12.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.3969/j.issn.1001-4381.2014.04.002      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I4/7
[1] CHEN Z C, TAKENOBU TAKEDA, KEISUKE IEDA. Microstructural evolution of reactive-sintered aluminum matrix composites[J]. Composites Science and Technology,2008,(68):2245-2253.
[2] PARK J M,KIM D H, MATTERN N, et al. Microstructure and mechanical properties of Fe-Si-Ti-(Cu, Al) heterostructured ultrafine composites[J].Journal of Alloy and Compounds,2011,509(suppl):367-370.
[3] QIN Q D, ZHAO Y G, ZHAO Y, et al. Preparation of AlFeSiV compounds local reinforced Al matrix composite by pressureless reactive infiltration technique[J]. Materials Science and Engineering:A,2008,(487):352-359.
[4] ARHAMI M, SARIOGLU F, KALKANLI A, et al. Microstructural characterization of squeeze-cast Al-8Fe-1.4V-8Si[J].Materials Science and Engineering:A,2008,(485):218-223.
[5] SHABESTARI S G, MAHMUDI T, EMAMY M, et al. Effect of Mn and Sr on intermetallics in Fe-rich eutectic Al-Si alloy[J].International Journal of Cast Metals Research,2002,15(1):17-24.
[6] 孙剑飞,谢壮德,沈军,等.快速凝固/粉末冶金高硅铝合金微观组织及拉伸性能[J]. 材料工程,2001,(11):13-16.SUN Jian-fei, XIE Zhuang-de, SHEN Jun, et al. Microstructure and tensile properties of a rapidly solidified high silicon aluminum alloy[J].Journal of Materials Engineering,2001,(11):13-16.
[7] SHON IN-JIN, JO SEUNG-HOON, KO IN-YONG, et al. Fast consolidation of a nanocrystalline Al2O3 reinforced 3.7Fe0.54-Cr0.18Al0.26Si0.016 composite from mechanical synthesized powder through pulsed current activated heating[J]. Journal of Alloys and Compounds,2010,509(19):L183-L186.
[8] TSUNEKAWA Y, SUZUKI H, GEMMA Y. Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring[J]. Materials and Design,2001,22(6):467-472.
[9] 付高峰,姜澜,刘吉,等.反应自生氧化铝颗粒增强铝基复合材料[J].中国有色金属学报,2006,16(5):853-857.FU Gao-feng, JIANG Lan, LIU Ji,et al. In situ decomposed Al2O3 particles reinforced aluminum matrix composites[J]. The Chinese Journal of Nonferrous Metals,2006,16(5):853-857.
[10] 胡明,高晶,于海成,等.原位自生Al2O3-TiCp/Al基复合材料的热力学分析[J]. 材料工程,2010,(3):74-78. HU Ming, GAO Jing, YU Hai-cheng, et al. Thermodynamic analysis of in-situ Al2O3-TiCp/Al composites by MC technique[J].Journal of Materials Engineering,2010,(3):74-78.
[11] 李文钊, 边秀房.铝铁复合铸造界面金相研究[J].机械工程学报,2011,47(16):67-72. LI Wen-zhao, BIAN Xiu-fang. Metallographic study of interface achieved by aluminum-iron compound casting[J]. Chinese Journal of Mechanical Engineering,2011,47(16):67-72.
[12] MUNOZ-MORRIS M A, GARCIA C, MORRIS D G. An analysis of strengthening mechanism in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic[J]. Acta Materiallia,2002,50(11):2825-2836.
[13] ZHANG W J, SUNDAR R S, DEEVI S C. Improvement of the creep resistance of FeAl-based alloys[J]. Intermetallies,2004,(12):893-897.
[14] ARHAMI M, SARIOGLU F,KALKANLI A, et al. Microstructural characterization of squeeze-cast Al-8Fe-1.4V-8Si[J]. Materials Science and Engineering:A,2008,485(1):218-223.
[15] 陈玉勇,杨非,孔凡涛,等.烧结温度对TiAl合金块体材料组织和性能的影响[J]. 材料工程,2010,(4):1-4. CHEN Yu-yong, YANG Fei, KONG Fan-tao, et al. Effect of sintering temperature on microstructure and properties of TiAl bulk materials[J]. Journal of Materials Engineering,2010,(4):1-4.
[16] 陈振华, 贺毅强, 陈志钢, 等. SiCP/Al-8.5Fe-1.3V-1.7Si复合材料的显微组织及室温力学性能[J]. 中国有色金属学报,2007,17(6):858-859. CHEN Zhen-hua, HE Yi-qiang, CHEN Zhi-gang, et al. Microstructure and ambient temperature mechanical properties of SiCp/Al-8.5Fe-1.3V-1.7Si composite[J].The Chinese Journal of Nonferrous Metals,2007,17(6):858-859.
[17] TONG X C, FANG H S. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology[J]. Metallurgical and Materials Transactions A,1998,29(3):893-902.
[18] LIU J H, MA T Y,TONG H, et al. Electromagnetic wave absorption properties of flaky Fe-Ti-Si-Al nanocrystalline composites[J]. Journal of Magnetism and Magnetic Materials,2010,322(8):940-944.
[19] 赵瑞峰,刘宗侠,杨明生,等.Mg对原位合成TiB2/Al-7Si复合材料的微观组织及力学性能的影响[J].中国有色金属学报,2009, 19(9):1548-1554.ZHAO Rui-feng, LIU Zong-xia, YANG Ming-sheng, et al. Effect of Mg on microstructures and mechanical properties of in-situ TiB2/Al-7Si composite[J]. The Chinese Journal of Nonferrous Metals,2009,19(9):1548-1554.
[1] 岳远杰, 唐荻, 武会宾, 梁金明, 巨彪. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14-20.
[2] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
[3] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[4] 林雪冬, 刘昌明, 卢建波. Si含量对离心铸造Al-8.5Ni-xSi复合材料组织与性能的影响[J]. 材料工程, 2015, 43(2): 53-60.
[5] 杜红燕, 李亚江. AZ31/7005异种材料填丝GTAW焊接接头的组织与性能[J]. 材料工程, 2014, 0(9): 14-19.
[6] 刘名涛, 钟喜春, 刘仲武, 曾德长, 李周, 张国庆. 等离子喷涂制备MoSi2-CoNiCrAlY纳米复合涂层的结构与性能[J]. 材料工程, 2014, 0(5): 17-22.
[7] 孙冠华, 仇实, 郑经堂. 水热法制备聚苯乙烯/CdS核壳结构纳米复合颗粒[J]. 材料工程, 2014, 0(4): 89-94.
[8] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[9] 焦剑, 吴广力, 刘蓬, 蔡宇. MSU-J及有机化修饰对PMMA杂化材料力学性能和热性能的影响[J]. 材料工程, 2014, 0(2): 18-23.
[10] 王军, 刘莹, 丁红燕. 溅射法制备TiO2薄膜的耐腐蚀性[J]. 材料工程, 2014, 0(12): 34-38.
[11] 谈淑咏, 吴湘君, 张旭海, 张炎, 蒋建清, 朱雪锋, 江先彪. 层厚比对磁控溅射Cr/CrN多层涂层组织和性能的影响[J]. 材料工程, 2014, 0(11): 28-33.
[12] 吕煜坤, 盛光敏, 尹丽晶. V-N微合金化抗震钢筋铁素体中V(C,N)析出行为分析[J]. 材料工程, 2014, 0(11): 43-49.
[13] 张瑞英, 陈素娟, 史志铭, 张连凤. Mg对原位合成TiC-Al2O3/Al复合材料组织与耐磨性的影响[J]. 材料工程, 2014, 0(10): 65-70.
[14] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
[15] 赵龙志, 焦宇, 赵明娟, 张坚, 胡勇, 熊光耀, 姜羡. 保温时间对Al-Fe-Si/Al原位复合材料力学性能的影响[J]. 材料工程, 2014, 0(1): 35-40,46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn