Please wait a minute...
材料工程  2014, Vol. 0 Issue (4): 46-52    DOI: 10.3969/j.issn.1001-4381.2014.04.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
刘学杰1,2, 魏怀1, 任元1, 陆峰1, 张素慧1, 银永杰1
1. 内蒙古科技大学 机械工程学院, 内蒙古 包头 014010;
2. 北京工业大学 耿丹学院, 北京 101301
Growth of Radicals on CVD Diamond (001) Surface:First Principle Studies
LIU Xue-jie1,2, WEI Huai1, REN Yuan1, LU Feng1, ZHANG Su-hui1, YIN Yong-jie1
1. School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
2. Gengdan Institute, Beijing University of Technology, Beijing 101301, China
全文: PDF(4122 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理方法研究CVD金刚石薄膜(001)表面的生长机理。计算清洁金刚石表面和氢(H)终止金刚石表面的构型。考察H原子和活性基团(C,CH,CH2和CH3)在清洁重构金刚石表面及在单层H终止金刚石表面上的吸附演变。结果表明:清洁金刚石表面发生了对称二聚体重构,H原子终止金刚石表面稳定了金刚石结构;基团在金刚石(001)表面吸附演变过程中,H原子起到激活石墨和萃取表面H原子产生活性位的作用;CH2基团比CH3基团能够更好地提高CVD金刚石薄膜的生长率,是薄膜生长过程中最有效基团;CH基团阻碍了薄膜的生长。
E-mail Alert
关键词 第一性原理CVD金刚石薄膜基团生长机理吸附演变    
Abstract:The growth mechanism about CVD diamond films on (001) surface was studied with first-principle method which was based on density functional theory (DFT). The configurations of clean diamond surface and H-terminated diamond surface were calculated. The adsorption evolutions of H atoms and radicals (C, CH, CH2 and CH3) on the surface of diamond reconstruction and the surface of monolayer H-terminated diamond were analyzed. The results indicate that a clean diamond surface undergoes a symmetrical dimer reconstruction transformation and a monolayer H adsorbed on the surface can lead to stable of the diamond structure. In addition, H atoms can activate graphite and extract H to make a radical site when radicals are adsorbed on the diamond (001) surface. CH2 groups can better improve the growth rate of CVD diamond film than CH3 groups. CH2 group is the most efficient group in the process of CVD diamond film growth. CH group hinders the growth of CVD diamond film.
Key wordsfirst-principle    CVD diamond film    radical    growth mechanism    adsorption evolution
收稿日期: 2013-10-11     
1:  TQ127.1+1  
作者简介: 刘学杰(1953- ),男,教授,主要从事数字化制造工艺过程仿真研究,联系地址:内蒙古包头市阿尔丁大街7号内蒙古科技大学机械工程学院(014010),
刘学杰, 魏怀, 任元, 陆峰, 张素慧, 银永杰. 基于第一性原理方法研究基团在CVD金刚石薄膜(001)表面上的生长[J]. 材料工程, 2014, 0(4): 46-52.
LIU Xue-jie, WEI Huai, REN Yuan, LU Feng, ZHANG Su-hui, YIN Yong-jie. Growth of Radicals on CVD Diamond (001) Surface:First Principle Studies. Journal of Materials Engineering, 2014, 0(4): 46-52.
链接本文:      或
[1] DEUERLER F, POHL M, TIKANA L, et al. Wear mechanisms of diamond-coated tools[J]. Surface and Coatings Technology,2001,142-144:674-680.
[2] SUN F H, ZHANG Z M, CHEN M, et al. Fabrication and application of high quality diamond coated tools[J]. Journal of Materials Proceedings Technology,2002,129(1):435-440.
[3] MAY P W. Diamond thin films: a 21st-century material[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2000,358(1766):473-495.
[4] LEE S T, LIN Z, JIANG X. CVD diamond films: nucleation and growth[J]. Materials Science and Engineering R:Reports,1999,25(4):123-154.
[5] DAS D, SINGH R N. A review of nucleation, growth and low temperature synthesis of diamond thin films[J]. International Materials Reviews,2007,52(1):29-64.
[6] BUTLER J E, MANKELEVICH Y A, CHEESMAN A, et al. Understanding the chemical vapor deposition of diamond: recent progress[J].Journal of Physics:Condensed Matter,2009,21(36):364201-364220.
[7] SRIKANTH V. Review of advances in diamond thin film synthesis[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2012,226(2):303-318.
[8] SUN B W, ZHANG X P, LIN Z D. Growth mechanism and the order of appearance of diamond (111) and (100) facets[J]. Physical Review B:Condensed Matter,1993,47(15):9816-9824.
[9] WALL M A, CAHILL D G, PETROV I, et al. Nucleation kinetics during homoepitaxial growth of TiN(001) by reactive magnetron sputtering[J]. Physical Review B,2004,70(3):035413-035418.
[10] LUO Y R. Comprehensive Handbook of Chemical Bond Energies[M]. Boca Raton,Florida,USA:CRC Press,2007.
[11] HARRIS S J, GOODWIN D G. Growth on the reconstructed diamond (100) surface[J]. The Journal of Physical Chemistry,1993,97(1):23-28.
[12] ALFONSO D R, ULLOA S E, BRENNER D W. Hydrocarbon adsorption on a diamond (100) stepped surface[J]. Physical Review B,1994,49(7):4948-4953.
[13] SKOKOV S, WEINER B, FRENKLACH M. Elementary reaction mechanism for growth of diamond (100) surfaces from methyl radicals[J]. The Journal of Physical Chemistry,1994,98(28):7073-7082.
[14] FRENKLACH M, SKOKOV S, WEINER B. An atomistic model for stepped diamond growth[J].Nature,1994,372(6506):535-537.
[15] TAKASHI Y. A model calculation of the homoepitaxial growth on diamond (111) surface by chemical vapor deposition[J]. Japanese Journal of Applied Physics,2004,43(1):287-292.
[16] MEHANDRU S P, ANDERSON A B. Adsorption of H, CH3, CH2 and C2H2 on 2×1 restructured diamond (100)[J].Surface Science,1991,248(3):369-381.
[17] MAY P W, ALLAN N L, ASHFOLD M N R, et al. Simplified Monte Carlo simulations of chemical vapour deposition diamond growth[J]. Journal of Physics:Condensed Matter,2009,21(36):364203-364221.
[18] KANG J K, MUSGRAVE C B. A theoretical study of the chemical vapor deposition of (100) diamond: an explanation for the slow growth of the(100) surface[J]. The Journal of Physical Chemistry,2000,113(17):7582-7587.
[19] JIN H, DAI Y, LONG R, et al. First principles studies for formation mechanism and properties of ethylene molecule adsorbing on diamond(100)surface[J]. Journal of Chemical Physics,2008,128(11):114710-114715.
[20] RICHLEY J C, HARVEY J N, ASHFOLD M N. CH2 group migration between H-terminated 2×1 reconstructed {100} and {111} surfaces of diamond[J]. Journal of Physics Chemical,2012,116(14):7810-7816.
[21] BUTLER J E, WOODIN R L, BROWN L M, et al. Thin film diamond growth mechanisms[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1993,342(1664):209-224.
[22] CELII F G, BUTLER J E. Diamond chemical vapor deposition[J]. Annual Review of Physical Chemistry,1991,42(1):643-684.
[23] YANG S H, DRABOLD D A, ADAMS J B. Ab initio study of diamond C (100) surfaces[J]. Physical Review B,1993,48(8):5261-5264.
[24] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electro-gas correlation energy[J]. Physical Review B,1992,45(23):13244-13249.
[25] KRESSE G, FURTHMVLLER J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1966,54(16):11169-11186.
[26] KITTEL C. Introduction to Solid State Physic[M]. 8th ed. New York: John Wiley & Sons,Inc,2004.19,59.
[27] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B,1976,13(12):5188-5192.
[28] FURTHMVLLER J, HAFNER J, KRESSE G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces[J]. Physical Review B,1996,53(11):7334-7351.
[29] KRVGER P, POLLMANN J. Dimer reconstruction of diamond, Si, and Ge (001) surfaces[J]. Physical Review Letter,1995,74(7):1155-1158.
[30] LIDE D R. CRC Handbook of Chemistry and Physics[M]. 82nd ed.Boca Raton:CRC Press,2001.9-21.
[31] YU Y, XU L F, GU C Z. Ab initio structural characterization of the hydrogen-covered diamond (001) surface[J]. Physical Review B,2004,70(12):125423-125426.
[32] STECKEL J A, KRESSE G, HAFNER J. Structural characterization of the hydrogen-covered C (100) surface by density functional theory calculations[J]. Physical Review B,2002,66(15):155406-115410.
[33] HONG S, CHOU M Y. Theoretical study of hydrogen-covered diamond (100) surfaces: a chemical-potential analysis[J]. Physical Review B,1997,55(15):9975-9982.
[34] ZHANG J M, LI H Y, XU K W, et al. Calculation of surface energy and simulation of reconstruction for diamond cubic crystals (001) surface[J]. Applied Surface Science,2008,254(13):4128-4133.
[35] CHEESMAN A, HARVEY J N, ASHFOLD M N R. Studies of carbon incorporation on the diamond {100} surface during chemical vapor deposition using density functional theory[J]. The Journal of Physical Chemistry,2008,112(45):11436-11448.
[36] RICHLEY J C, HARVEY J N, ASHFOLD M N R. On the role of carbon radical insertion reactions in the growth of diamond by chemical vapor deposition methods[J]. The Journal of Physical Chemistry,2009,113(42):11416-11422.
[37] MA Y D, JIN H, DAI Y, et al. Study of ammonia molecule adsorbing on diamond (100) surface[J]. Applied Surface Science,2010,256(13):4136-4141.
[38] HARRIS S J. Mechanism for diamond growth from methyl radicals[J]. Applied Physics Letters,1990,56(23):2298-2300.
[39] CHU C J, D'EVELYN M P, HAUGE R H, et al. Mechanism of diamond growth by chemical vapor deposition on diamond (100), (111), and (110) surfaces: carbon-13 studies[J]. Journal of Applied Physics,1991,70(3):1695-1706.
[1] 蒋淑英, 李世春. Al/Fe液-固界面扩散反应层生长动力学分析[J]. 材料工程, 2015, 43(5): 62-66.
[2] 张悦周, 张广成, 赵玺浩, 何祯. 聚酯铵盐前驱体热亚胺化过程研究[J]. 材料工程, 2009, 0(12): 17-21.
[3] 张向超, 杨华明, 陶秋芬. TiO2基纳米材料第一性原理计算模拟的研究进展[J]. 材料工程, 2008, 0(1): 76-80.
[4] 高后秀, 王炜娜, 陈泉水, 刘双翼. 一维Cu-Zn-Al合金纳米结构的制备及生长机理研究[J]. 材料工程, 2005, 0(5): 27-29,33.
[5] 涂小林, 吴树森, 吴广忠. (NaPO3)n对过共晶Al-Si合金初晶硅细化的研究[J]. 材料工程, 2002, 0(8): 13-16.
[6] 陈拥军, 李建保, 魏强民, 翟华嶂. 不同形貌TaCx晶须的制备及生长机理[J]. 材料工程, 2002, 0(10): 15-18.
[7] 徐桦, 郭梦熊. 国产稻壳BP-SiCw的生长机理研究[J]. 材料工程, 1994, 0(2): 14-16.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持