Please wait a minute...
 
材料工程  2004, Vol. 0 Issue (11): 41-44,49    
  研究与应用 本期目录 | 过刊浏览 | 高级检索 |
40Cr钢流变应力的分析及模拟
李雄1, 张鸿冰2, 阮雪榆1, 罗中华1, 张艳3
1. 上海交通大学塑性成形系, 上海, 200030;
2. 上海应用技术学院材料工程系, 上海, 200235;
3. 北京科技大学新金属材料国家重点实验室, 北京, 100083
Analysis and Modeling of Flow Stress of 40Cr Steel
LI Xiong1, ZHANG Hong-bing2, RUAN Xue-yu1, LUO Zhong-hua1, ZHANG Yan3
1. Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai, 200030, China;
2. Department of Materials Engineering, Shanghai Institute of Technology, Shanghai, 200235, China;
3. StateKey Laboratory for Advanced Metals and Materials, University ofScience & Technology Beijing, Beijing, 100083, China
全文: PDF(600 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究了不同变形条件下流变应力的变化,发现流变应力与变形温度呈递减关系而与变形速率呈递增关系.在 Ludwik-Hollomon 模型的基础上,提出了一个描述热/温变形的改进模型,该模型在对40Cr钢的模拟中表现出了较好的效果.硬化指数对变形温度不敏感,在低的应变速率下有一个不变值,而在高的应变速率下突然跃变.对峰值应力进行了预测,结果较为理想,预测值与实验值之间的平均相对误差和均方根分别为7.7%和17.59MPa.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雄
张鸿冰
阮雪榆
罗中华
张艳
关键词 变形温度流变应力应变速率峰值应力    
Abstract:The flow stresses at various deformation conditions were studied. The results show that flow stress decreases with deformation temperature increasing, and increases with strain rate increasing. Based on Ludwik-Hollomon model, an improved model suiting for hot and warm working was discussed. A good result was got when modeling flow stress of 40Cr steel in the improved model. Hardening exponent n is insensitive to deformation temperature. At low strain rate, n value is hardly changed; when up to a high strain rate, n jumps to a high value. By simplifying some parameters, peak stress can be predicted. The average relative error and the mean square root between predicted and experimental flow stresses are 7.7% and 17.59MPa, respectively.
Key wordsdeformation temperature    flow stress    strain rate    peak stress
收稿日期: 2004-07-09      出版日期: 2004-11-20
中图分类号:  TG111.7  
作者简介: 李雄(1969- ),男,博士研究生,工程师,主要从事金属热变形的数值模拟和工模具的深冷处理研究,联系地址:上海交通大学塑性成形系(200030).
引用本文:   
李雄, 张鸿冰, 阮雪榆, 罗中华, 张艳. 40Cr钢流变应力的分析及模拟[J]. 材料工程, 2004, 0(11): 41-44,49.
LI Xiong, ZHANG Hong-bing, RUAN Xue-yu, LUO Zhong-hua, ZHANG Yan. Analysis and Modeling of Flow Stress of 40Cr Steel. Journal of Materials Engineering, 2004, 0(11): 41-44,49.
链接本文:  
http://jme.biam.ac.cn/new/CN/      或      http://jme.biam.ac.cn/new/CN/Y2004/V0/I11/41
[1] ANAND L. Constitutive equations for the rate-dependent deformation of metals at elevated temperatures [J].Trans AIME, 1982,104: 12-17.
[2] RAO K P, HAWBOLT E B. Development of constitutive relationships using compression testing of a medium carbon steel [J].Trans AIME, 1992, 114: 116-123.
[3] KLEPACZKO J R. A practical stress-strain-strain-rate temperature constitutive relation of the power form [J].J Mech Work Tech,1987, 15: 143- 165.
[4] BARAGAR D L. The high temperature and high strain-rate behavior of a plain carbon and an HSLA steel [J].J Mech Work Tech, 1987,14: 295-307.
[5] SAITO Y, ENAMI T, TANAKA T. The mathematical model of hot deformation resistance with reference to microstructure changes during rolling in plate mill [J].Trans ISIJ, 1985, 25:1149 -1155.
[6] LUDWIK P. Elemente der Techanologishen Mechanik [M].Berlin:Springer-Verlag OHG, 1909.
[7] HOLLOMON J H. Tensile Deformation [J].Trans AIME, 1945,162:268 - 290.
[8] LUDWIKSON D C. Modified stress-strain relation for fcc metals and alloys [J].Metall. Trans., 1971, 2(10): 2825-2828.
[9] VOCE E. The relationship between stress and strain for homogeneous deformation [J].J Inst Metals, 1948, 74:537- 562.
[10] SIMMONS J W. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8-10)Mn-5Ni austenitic stainless steels[J].Acta Mater, 1997, 45(6): 2467 - 2475.
[11] MECKING H. Strength of metals and alloys[A].HAASEN P,GEROLD V, KOSTORZ G. Proc 5th Iht Conf on the Strength of Metals ana Alloys [ C].Oxford: Pergamon Press, 1980. 1573 -1594.
[12] SIVAPRASAD P V, VENUGOPAL S, VENKADESAN. Effect of temperature and strain rate on tensile flow and work hardening behaviour of a Ti modified austenitic stainless steel [ J ].Materials Science and Technology, 2004, 20(3): 350 - 356.
[13] CABRERA J M, JONAS J J, PRADO J M. Effect of the chemical composition on the peak and steady streses of plain carbon and microalloyed steels deformed under hot working conditions [ J ].Materials Science Forum, 1998, 284- 286: 127- 134.
[14] FROST H J. Deformation-Mechanism Maps [M].Oxford: Pergamon Press, 1982.
[15] BORG R J and LAID Y F. The diffusion of Au, Ni, and Co in aFe [J].Acta Metall, 1963, 11: 861 - 866.
[16] BUFFINGTON F S, HIRANO K, COHEN M. Self diffusion in iron [J].Acta Metall, 1961, 9: 434-439.
[1] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
[2] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[3] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
[6] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[7] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[8] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[9] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[10] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[11] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[12] 程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
[13] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[14] 于建明, 温彤, 岳远旺, 吴诗仁, 雷帆, 肖冰娥. 基于BP神经网络的AZ31镁合金加工图参数优化[J]. 材料工程, 2013, 0(9): 27-31.
[15] 代启锋, 宋仁伯, 关小霞. 超高强铁素体-马氏体双相钢在动态拉伸变形条件下组织和性能研究[J]. 材料工程, 2013, 0(4): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn