Please wait a minute...
 
材料工程  2007, Vol. 0 Issue (10): 76-80    
  综述 本期目录 | 过刊浏览 | 高级检索 |
高强铝合金的应力腐蚀测试方法综述与评价
刘继华
上海工程技术大学, 材料工程学院, 上海, 201620
Synthetic Evaluation on Stress Corrosion Testing Methods of High Strength Aluminum Alloys
LIU Ji-hua
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
全文: PDF(1123 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了高强铝合金应力腐蚀的各种测试方法及其原理与应用情况,通过分析与评价各应力腐蚀性能测试方法的优缺点,可以看出,用单一方法评价铝合金的应力腐蚀性能及其机制是有局限性的,需要通过多种方法的相互印证进行综合分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘继华
关键词 铝合金应力腐蚀测试方法评价    
Abstract:The stress corrosion testing methods of high strength aluminum alloys are reviewed.The principles and applications of these methods are presented.The advantages and shortcomings of those methods are analyzed.Because only one method can not evaluate the stress corrosion properties of aluminum alloys comprehensively,it would be better to measure aluminum alloys with different testing methods mentioned.
Key wordsaluminum alloy    stress corrosion    testing method    evaluation
收稿日期: 2006-06-02      出版日期: 2007-10-20
中图分类号:  TG172.9  
作者简介: 刘继华(1969- ),男,讲师,博士,现从事材料腐蚀及防护研究,联系地址:上海工程技术大学材料工程学院(201620).
引用本文:   
刘继华. 高强铝合金的应力腐蚀测试方法综述与评价[J]. 材料工程, 2007, 0(10): 76-80.
LIU Ji-hua. Synthetic Evaluation on Stress Corrosion Testing Methods of High Strength Aluminum Alloys. Journal of Materials Engineering, 2007, 0(10): 76-80.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2007/V0/I10/76
[1] DAV(O) B,CONDE A,DAMBORENEA J DE.Stress corrosion cracking of B13,a new high strength aluminium lithium alloy[J].Corrosion Seience,2006,48(12):4113-4126.
[2] CHANG Chih-horng,LEE Sheng-long,LIN Jing-chie,et al.Effect of Ag content and heat treatment on the stress corrosion cracking of Al-4.6Cu-0.3Mg alloy[J].Materials Chemistry and Physics,2005,91(2):454-462.
[3] 杜则裕,陶勇寅,李云涛,等.国产X70管线钢的硫化氢应力腐蚀性能及其焊接性[J].焊接学报,2004,25(5):13-16.
[4] 芦笙,陈静,林萍华.Cu-Al-Be形状记忆合金的应力腐蚀性能[J].腐蚀科学与防护技术,2002,14(5):267-270.
[5] 吴荫顺,方智,何积铨,等.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社,1996.104-123.
[6] DESHAIS G,NEWCOMB S B.The influence of microstructure on the formation of stress corrosion cracks in 7xxx series aluminum alloys[J].Mater Sci Forum,2000,331-337:1635-1640.
[7] ASTM G44-1999,Standard practice for exposure of metals and alloys by alternate immersion in neutral 3.5% Sodium chloride solution[S].
[8] ASTM G64-1999,Standard classification of resistance to stresscorrosion cracking of heat-treatable aluminum alloys[S].
[9] ASTM G47-1998,Standard test method for determining susceptibility to stress-corrosion cracking of 2xxx and 7xxx aluminum alloy products[S].
[10] LEE Seong-min,Pyun Su-Ⅱ,Chun Young-gab.A critical evaluation of the stress-corrosion cracking mechanism in high-strength aluminum alloys[J].Metall Trans A,1991,22(6):2407-2414.
[11] TSAI W T,DUH J B,YEH J J,et al.Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5% NaCl solution[J].Corrosion,1990,46(5):444-449.
[12] BRAUN R.Slow strain rate testing of aluminum alloy 7050 in different tempers using various synthetic environments[J].Corrosion,1997,53(3):467-474.
[13] 乔利杰,王燕斌,褚武扬.应力腐蚀机理[M].北京:科学出版社,1993.15-17.
[14] NAJJAR D,MAGNIN T,WARNER T J.Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of 7050 aluminum alloy[J].Mater Sci Eng A,1997,238(2),293-302.
[15] TSAI T C,CHUANG T H.Role of grain size in the stress corrosion cracking of 7475 aluminum alloy[J].Mater Sei Eng A,1997,225(4):135-144.
[16] TSAI T C,CHANG J C,CHUANG T H.Stress corrosion cracking of superplastically formed 7475 aluminum alloy[J].Metall Mater Trans A,1997,28(6):2113-2121.
[17] SINGH P M,LEWANDOWSKI J J.Effects of heat treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7xxx alloy during slow strain rate testing[J].Scr Metall Mater,1995,33(5):1393-1399.
[18] PARKINS R N,SINGH P M.Stress corrosion crack comescence[J].Corrosion,1990,46(3):485-499.
[19] TANGUY D,BAYLE B,DIF R,et al.Hydrogen effects during SCC propagation of Al-5Mg in 30g/L NaCl solutions[J].Mater Sci Forum,2000,331-337:1659-1664.
[20] SPEIDEL M O.Stress corrosion cracking of aluminum alloys[J].Metall Trans A,1975,6(6):631-650.
[21] DORWARD R C,HASSE K R.Flaw growth in high strength Al-Zn-Mg-Cu alloys exposed to stress corrosion environments[J].Corrosion,1978,34(4):386-395.
[22] STALEY J T.Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys[J].Metall Trans A,1975,8(3):631-657.
[23] HASSE K R,DORWARD R C.Long-term marine atmospheric stress corrosion tests on high-strength AlZnMgCu alloys[J].Corrosion,1986,42(5):663-669.
[24] DORWARD R C,HASSE K R.On tensile properties and SCC resistance of Al-Zn-Mg-Cu system alloys[J].Corros Sci,1982,22(3):251-257.
[25] MAITRA S.Determination of stress corrosion cracking of Al-Cu-Mg alloys by slow strain rate and alternate immersion testing[J].Corrosion,1981,37(1):98-103.
[26] LI Xiao-mei,STARINK M J.Analysis of precipitation and dissolution in overaged 7xxx aluminum alloys using DSC[J].Mater Sci Forum,2000,331-337:1071-1076.
[27] RIONTINO G,ABIS S,MENGUCCI P.DSC investigation of natural ageing in high-copper AlCuMg alloys[J].Mater Sci Fornm,2000,331-337:1025-1030.
[28] DEIASI R,ADLER P N.Calorimetric studies of 7000 series aluminum alloys:Ⅰ.Matrix precipitate characterization of 7075 Ⅱ.Comparison of 7075,7050,and RX720 alloys[J].Metall Trans A,1977,8(6):1177-1190.
[29] ASTM E1004-2002,Standard practice for determining electrical conductivity using the electromagnetic (eddy-current) method[S].
[30] ROBINSON J S,CUDD R L.Electrical conductivity variations in X2096,8090,7010 and an experimental aluminium lithium alloy[J].Mater Sci Forum,2000,331-337:971-976.
[31] COOPER K R,YOUNG L M,GANGLOFF R P,et al.The electrode potential dependence of environment-assisted cracking of AA7050[J].Mater Sci Forum,2000,331-337:1625-1634.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[6] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[7] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[8] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[9] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[10] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[13] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[14] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[15] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn