Please wait a minute...
 
材料工程  2007, Vol. 0 Issue (10): 76-80    
  综述 本期目录 | 过刊浏览 | 高级检索 |
高强铝合金的应力腐蚀测试方法综述与评价
刘继华
上海工程技术大学, 材料工程学院, 上海, 201620
Synthetic Evaluation on Stress Corrosion Testing Methods of High Strength Aluminum Alloys
LIU Ji-hua
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
全文: PDF(1123 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了高强铝合金应力腐蚀的各种测试方法及其原理与应用情况,通过分析与评价各应力腐蚀性能测试方法的优缺点,可以看出,用单一方法评价铝合金的应力腐蚀性能及其机制是有局限性的,需要通过多种方法的相互印证进行综合分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘继华
关键词 铝合金应力腐蚀测试方法评价    
Abstract:The stress corrosion testing methods of high strength aluminum alloys are reviewed.The principles and applications of these methods are presented.The advantages and shortcomings of those methods are analyzed.Because only one method can not evaluate the stress corrosion properties of aluminum alloys comprehensively,it would be better to measure aluminum alloys with different testing methods mentioned.
Key wordsaluminum alloy    stress corrosion    testing method    evaluation
收稿日期: 2006-06-02      出版日期: 2007-10-20
1:  TG172.9  
作者简介: 刘继华(1969- ),男,讲师,博士,现从事材料腐蚀及防护研究,联系地址:上海工程技术大学材料工程学院(201620).
引用本文:   
刘继华. 高强铝合金的应力腐蚀测试方法综述与评价[J]. 材料工程, 2007, 0(10): 76-80.
LIU Ji-hua. Synthetic Evaluation on Stress Corrosion Testing Methods of High Strength Aluminum Alloys. Journal of Materials Engineering, 2007, 0(10): 76-80.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2007/V0/I10/76
[1] DAV(O) B,CONDE A,DAMBORENEA J DE.Stress corrosion cracking of B13,a new high strength aluminium lithium alloy[J].Corrosion Seience,2006,48(12):4113-4126.
[2] CHANG Chih-horng,LEE Sheng-long,LIN Jing-chie,et al.Effect of Ag content and heat treatment on the stress corrosion cracking of Al-4.6Cu-0.3Mg alloy[J].Materials Chemistry and Physics,2005,91(2):454-462.
[3] 杜则裕,陶勇寅,李云涛,等.国产X70管线钢的硫化氢应力腐蚀性能及其焊接性[J].焊接学报,2004,25(5):13-16.
[4] 芦笙,陈静,林萍华.Cu-Al-Be形状记忆合金的应力腐蚀性能[J].腐蚀科学与防护技术,2002,14(5):267-270.
[5] 吴荫顺,方智,何积铨,等.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社,1996.104-123.
[6] DESHAIS G,NEWCOMB S B.The influence of microstructure on the formation of stress corrosion cracks in 7xxx series aluminum alloys[J].Mater Sci Forum,2000,331-337:1635-1640.
[7] ASTM G44-1999,Standard practice for exposure of metals and alloys by alternate immersion in neutral 3.5% Sodium chloride solution[S].
[8] ASTM G64-1999,Standard classification of resistance to stresscorrosion cracking of heat-treatable aluminum alloys[S].
[9] ASTM G47-1998,Standard test method for determining susceptibility to stress-corrosion cracking of 2xxx and 7xxx aluminum alloy products[S].
[10] LEE Seong-min,Pyun Su-Ⅱ,Chun Young-gab.A critical evaluation of the stress-corrosion cracking mechanism in high-strength aluminum alloys[J].Metall Trans A,1991,22(6):2407-2414.
[11] TSAI W T,DUH J B,YEH J J,et al.Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5% NaCl solution[J].Corrosion,1990,46(5):444-449.
[12] BRAUN R.Slow strain rate testing of aluminum alloy 7050 in different tempers using various synthetic environments[J].Corrosion,1997,53(3):467-474.
[13] 乔利杰,王燕斌,褚武扬.应力腐蚀机理[M].北京:科学出版社,1993.15-17.
[14] NAJJAR D,MAGNIN T,WARNER T J.Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of 7050 aluminum alloy[J].Mater Sci Eng A,1997,238(2),293-302.
[15] TSAI T C,CHUANG T H.Role of grain size in the stress corrosion cracking of 7475 aluminum alloy[J].Mater Sei Eng A,1997,225(4):135-144.
[16] TSAI T C,CHANG J C,CHUANG T H.Stress corrosion cracking of superplastically formed 7475 aluminum alloy[J].Metall Mater Trans A,1997,28(6):2113-2121.
[17] SINGH P M,LEWANDOWSKI J J.Effects of heat treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7xxx alloy during slow strain rate testing[J].Scr Metall Mater,1995,33(5):1393-1399.
[18] PARKINS R N,SINGH P M.Stress corrosion crack comescence[J].Corrosion,1990,46(3):485-499.
[19] TANGUY D,BAYLE B,DIF R,et al.Hydrogen effects during SCC propagation of Al-5Mg in 30g/L NaCl solutions[J].Mater Sci Forum,2000,331-337:1659-1664.
[20] SPEIDEL M O.Stress corrosion cracking of aluminum alloys[J].Metall Trans A,1975,6(6):631-650.
[21] DORWARD R C,HASSE K R.Flaw growth in high strength Al-Zn-Mg-Cu alloys exposed to stress corrosion environments[J].Corrosion,1978,34(4):386-395.
[22] STALEY J T.Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys[J].Metall Trans A,1975,8(3):631-657.
[23] HASSE K R,DORWARD R C.Long-term marine atmospheric stress corrosion tests on high-strength AlZnMgCu alloys[J].Corrosion,1986,42(5):663-669.
[24] DORWARD R C,HASSE K R.On tensile properties and SCC resistance of Al-Zn-Mg-Cu system alloys[J].Corros Sci,1982,22(3):251-257.
[25] MAITRA S.Determination of stress corrosion cracking of Al-Cu-Mg alloys by slow strain rate and alternate immersion testing[J].Corrosion,1981,37(1):98-103.
[26] LI Xiao-mei,STARINK M J.Analysis of precipitation and dissolution in overaged 7xxx aluminum alloys using DSC[J].Mater Sci Forum,2000,331-337:1071-1076.
[27] RIONTINO G,ABIS S,MENGUCCI P.DSC investigation of natural ageing in high-copper AlCuMg alloys[J].Mater Sci Fornm,2000,331-337:1025-1030.
[28] DEIASI R,ADLER P N.Calorimetric studies of 7000 series aluminum alloys:Ⅰ.Matrix precipitate characterization of 7075 Ⅱ.Comparison of 7075,7050,and RX720 alloys[J].Metall Trans A,1977,8(6):1177-1190.
[29] ASTM E1004-2002,Standard practice for determining electrical conductivity using the electromagnetic (eddy-current) method[S].
[30] ROBINSON J S,CUDD R L.Electrical conductivity variations in X2096,8090,7010 and an experimental aluminium lithium alloy[J].Mater Sci Forum,2000,331-337:971-976.
[31] COOPER K R,YOUNG L M,GANGLOFF R P,et al.The electrode potential dependence of environment-assisted cracking of AA7050[J].Mater Sci Forum,2000,331-337:1625-1634.
[1] 晏忠钠, 车彦慧, 冯利邦, 强小虎, 刘艳花. 超疏水铝合金表面的防覆冰和防黏附行为[J]. 材料工程, 2015, 43(9): 25-29.
[2] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[3] 何正林, 高文理, 陆政, 冯朝辉. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43(8): 13-18.
[4] 章淑芳, 王晓敏, 陈辉, 廖潇垚. 7003铝合金动车柜体的应力腐蚀开裂[J]. 材料工程, 2015, 43(7): 105-112.
[5] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[6] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[7] 刘政军, 宫颖, 苏允海. 镁铝异种金属TIG焊接头性能的研究[J]. 材料工程, 2015, 43(3): 18-22.
[8] 郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
[9] 周峰, 吴开明. 超快冷工艺对高铌X80管线钢抗腐蚀性能的影响[J]. 材料工程, 2015, 43(2): 67-72.
[10] 马少华, 回丽, 周松, 许良, 朱永辉. 腐蚀环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 材料工程, 2015, 43(2): 91-95.
[11] 于美, 马荣豹, 刘建华, 李松梅, 王一博, 刘英智. 硝酸铈封闭对2A12铝合金己二酸-硫酸阳极氧化膜耐蚀性的影响[J]. 材料工程, 2015, 43(1): 24-29.
[12] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[13] 程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
[14] 汪洪峰, 左敦稳, 戴晟, 潘玲. 7022铝合金FSJ拼连板材残余应力和变形分析[J]. 材料工程, 2014, 0(7): 79-84.
[15] 李继忠, 马正斌, 董春林, 栾国红. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程, 2014, 0(6): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn