Please wait a minute...
 
材料工程  2008, Vol. 0 Issue (11): 5-8    
  论文 本期目录 | 过刊浏览 | 高级检索 |
异步累积叠轧技术制备超细晶铜材退火过程组织及取向研究
王军丽, 史庆南, 王效琪
昆明理工大学分析测试研究中心, 昆明, 650093
Study on Microstructure and Orientation Evolution of Ultra-fine Grained Copper Prepared by Asymmetrical Accumulative Rolling Bonding (AARB) During Annealing
WANG Jun-li, SHI Qing-nan, WANG Xiao-qi
Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, China
全文: PDF(1255 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对铜材进行异步累积叠轧并退火处理,制备出了均匀稳定的超细晶铜材。采用背散射电子衍射位向成像显微分析(EBSD+OIM)及透射电镜对变形铜材退火过程的组织及取向进行了观察和分析。结果表明:铜材经过六道次异步叠轧,包含许多缺陷和亚结构;在220℃×35~55min退火,可以获得200~500nm的超细晶;各种取向晶粒并存,择优取向不明显;延伸率得到提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王军丽
史庆南
王效琪
关键词 异步累积叠轧超细晶材料退火    
Abstract:The uniform ultra-fine grained copper was prepared by asymmetrical accumulative rolling bonding(AARB)and anneal.Microstructure and orientation evolution of samples after AARB and subsequent anneal were investigated.The deformed and annealed states were characterized by electron back scatter diffraction(EBSD)orientation image microscopy(OIM)and TEM.It was shown that there are many defects and substructure in the copper which is processed by AARB for six passes.The ultra-fine grained copper with the grain size of 200-500nm is obtained when deformed copper is annealed at 220℃ for 35-55min.Grains with all kinds of orientations exist together and some special orientations is not obvious.Elongation rate of UFG-Copper is increased.
Key wordsasymmetrical accumulative rolling bonding(AARB)    copper    ultra-fine grained material    annealing
收稿日期: 2007-09-17      出版日期: 2008-11-20
中图分类号:  TG335.5  
  TG339  
基金资助:国家自然科学基金(50564005);云南省自然科学基金重点项目(2003E003Z)
作者简介: 王军丽(1978- ),女,博士,从事材料加工与新材料制备方面的研究,联系地址:昆明理工大学分析测试研究中心(650093).E-mail:junliwangli@yahoo.com.cn
引用本文:   
王军丽, 史庆南, 王效琪. 异步累积叠轧技术制备超细晶铜材退火过程组织及取向研究[J]. 材料工程, 2008, 0(11): 5-8.
WANG Jun-li, SHI Qing-nan, WANG Xiao-qi. Study on Microstructure and Orientation Evolution of Ultra-fine Grained Copper Prepared by Asymmetrical Accumulative Rolling Bonding (AARB) During Annealing. Journal of Materials Engineering, 2008, 0(11): 5-8.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2008/V0/I11/5
[1] TSUJI N,SAITO Y,LEE S H,et al.ARB and other new techniques to produce bulk ultrafine grained materials[J] Advanced Engineering Materials,2003,5(5):338-344.
[2] 魏伟,陈光.大塑性变形制备块体纳米材料[J] 机械工程学报,2002,(7):1-5.
[3] HUANG X,TSUHJI N,HANSEN N,et al.Microstructural evolution during accumulative roll-bonding of commercialpurity aluminum[J] Materials Science & Engineering,A,Structural Materials:Properties,Microstructure and Processing,2003,340(1 -2):265-271.
[4] SAITO Y,UTAUNOMIYA H,TSUJI N,et a1.Novel ultra-high straining process for bulk materials:development of the accumulative roll-bonding process[J] Acta Mater,1999,47(2):579-583.
[5] SAITO Y,TSUJI N,UTAUNOMIYA H,et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding process[J] Scripta Mater,1998,39(9):122-1227.
[6] PEREZ-PRADO M T,DEL V J A,RUANO O A.Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding[J] Scripta Mater,2004,51(11):1093-1097.
[7] JANG Y H,KIM S S,HAN S Z,et a1.Effect of trace phosphorous on tensile behavior of accumulative roll bonded oxygen-free copper[J] Scripta Mater,2005,52(1):21-24.
[8] KIM W J,LEE J B,KIM W Y,et al.Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling[J] Scripta Mater,2007,(56):309-312.
[9] ADAM J S,MUKUL K,BRENT L A.Electron Backscatter Diffraction in Materials Science[M] New York:Kluwer Academic/Plenum Publishers,2001.
[10] HIRSCH J,L(U)CKE K.Mechanism of deformation and development of rolling texture in polycrystalline FCC metal[J] Acta Metal,1988,36:2863-2927.
[11] 毛卫民,赵新兵.金属的再结晶与晶粒长大[M] 北京:冶金工业出版社,1994.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[3] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[4] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[5] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[6] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[7] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[8] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[9] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[10] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[11] 孙翱魁, 刘跃军, 陈晴柔. 钼铜复合粉末的致密化及性能[J]. 材料工程, 2019, 47(1): 112-118.
[12] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[13] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[14] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[15] 黄元春, 许天成, 肖政兵, 任贤魏, 贾广泽. 弥散相对3003铝合金再结晶晶粒尺寸的影响[J]. 材料工程, 2018, 46(6): 65-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn