Please wait a minute...
 
材料工程  2008, Vol. 0 Issue (11): 59-62    
  工艺 本期目录 | 过刊浏览 | 高级检索 |
挤压铸造制备高体积含量SiCp/2024Al复合材料
于晓东, 王扬卫, 王富耻, 邹优锐, 高举斌
北京理工大学材料与工程学院, 北京, 100081
High Volume Fraction SiC Particles Reinforced 2024Al Composite Prepared by Squeeze Casting
YU Xiao-dong, WANG Yang-wei, WANG Fu-chi, ZOU You-rui, GAO Ju-bin
School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
全文: PDF(1198 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用干压成形将200μm与10μm的SiC颗粒按不同配比混合制得多孔陶瓷预制体,当粗、细颗粒质量比为8∶2时,预制体相对密度达到最大值75%。采用挤压铸造工艺制得陶瓷含量为75%的SiC/2024Al复合材料,研究了预制体氧化处理对复合材料力学性能的影响。未氧化处理的预制体经挤压铸造所得的复合材料抗弯强度达到288MPa,断裂韧性达到8.7MPa.m1/2;预制体经氧化处理后所得的复合材料的相对密度、抗弯强度和断裂韧性较未氧化处理的有所降低,但硬度变化不大,HRA约为70。复合材料失效破坏的主要机制是SiC大颗粒解理断裂和小颗粒与金属基体界面解离。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓东
王扬卫
王富耻
邹优锐
高举斌
关键词 金属基复合材料挤压铸造氧化处理力学性能断裂机制    
Abstract:High volume fraction composites were produced by infiltrating liquid aluminium into preforms made by mixing and packing SiC particles with average diameters of 200 and 10μm.The maximum particle volume fraction 75%(volume fraction)was obtained for a mixture having 80%(mass fraction)of coarse particles.The influence of preform’s oxidation treatment on mechanical properties of the composites was studied.The results showed that the bending strength and fracture toughness of the composite which was fabricated from the un-oxidation treatment preform were 288MPa and 8.7MPa·m1/2respectively.The relative density of the composite after oxidation treatment was lower,so as to the bending strength and toughness.But the oxidation treatment has little effect on the hardness of the composite,and the hardness of both composites was about HRA 70.The main failure mechanisms of the composite were the crack of the coarse particle and the debonding of the interface between fine particle and the matrix.
Key wordsmetal-matrix composite    squeeze casting    oxidation treatment    mechanical property    failure mechanism
收稿日期: 2007-12-19      出版日期: 2008-11-20
中图分类号:  TB331  
作者简介: 于晓东(1970- ),男,讲师,博士研究生,研究方向为陶瓷金属复合材料制备和性能表征,联系地址:北京海淀区中关村南大街5号北京理工大学材料科学与工程学院(100081).E-mail:yuxd@bit.edu.cn
引用本文:   
于晓东, 王扬卫, 王富耻, 邹优锐, 高举斌. 挤压铸造制备高体积含量SiCp/2024Al复合材料[J]. 材料工程, 2008, 0(11): 59-62.
YU Xiao-dong, WANG Yang-wei, WANG Fu-chi, ZOU You-rui, GAO Ju-bin. High Volume Fraction SiC Particles Reinforced 2024Al Composite Prepared by Squeeze Casting. Journal of Materials Engineering, 2008, 0(11): 59-62.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2008/V0/I11/59
[1] MISEREZ A,MULLER R,MORTENSEN A.Increasing the strength/toughness combination of high volume fraction particulate matrix composites using an Al-Ag matrix alloy[J] Advanced Engineering Materials,2006,8(1-2):56-62.
[2] ELOMARI S,SKIBO M D,SUNDARRAJAN A,et al.Thermal expansion behavior of particulate metal-matrix composites[J] Compos Sci Technol,1998,58(3):369 -376.
[3] MISEREZ A,MULLER R,ROSSOLL A,et al.Particle rein-forced metals of high ceramic content[J] Materials Science & Engineering A,2004,387-389:822-831.
[4] GARCI A-CORDOVILLA C,LOUIS E,NARCISO J.Pressure infiltration of packed ceramic particulates by liquid metals[J] Acta Mater,1999,47(8):4461-4479.
[5] ASTHANA R,ROHATGI P K,TEWARI S N.Infiltration processing of metal-matrix composites:a review[J] Process Adv Mater,1992,2:1 -17.
[6] MORTENSEN A,JIN I.Solidification processing of metal-matrix composites[J] Int Mater Rev,1992,37(3):101-128.
[7] SPAEPEN F.Structural model for the solid-liquid interface in monatomic systems[J] Acta Metall,1975,23(6):729-743.
[8] BOCCARA N,DAOUD M.Physics of finely divided matter[M] New York:Springer-Verlag,1985.76-79.
[9] MOLINA J M,SARAVANAN R A,ARPO N R,et al.Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution[J] Acta Materialia,2002,50(2):247-257.
[10] SRIVATSAN T S,MESLET AL-HAJRI,SMITH C,et al,The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite[J] Mater Sci Eng,2003,A346(1):91-100.
[11] SUGIMUURAY,SURESH S.Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles[J] Metall Trans,1992,23A(8):2231-2242.
[12] SINGH P M,LEWANDOWSKI J J.Effects of heat treatment and reinforcement size[J] Metall Trans,1993,24A(11):2531-2542.
[13] GRISHABER R B,MISHRA R S,MUKHERJEE A K.Effect of testing environment on intergranular microsuperplasticity in an aluminum MMC[J] Mater Sci Eng A,1996,220(11):78 84.
[14] GEORGE E DIETER.Mechanical Metallurgy[M] New York:McGraW-Hill Science Press,1983.252-253.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn